Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A class of fractional differential equations via power non-local and non-singular kernels: existence, uniqueness and numerical approximations (2312.00014v1)

Published 27 Oct 2023 in math.NA and cs.NA

Abstract: We prove a useful formula and new properties for the recently introduced power fractional calculus with non-local and non-singular kernels. In particular, we prove a new version of Gronwall's inequality involving the power fractional integral; and we establish existence and uniqueness results for nonlinear power fractional differential equations using fixed point techniques. Moreover, based on Lagrange polynomial interpolation, we develop a new explicit numerical method in order to approximate the solutions of a rich class of fractional differential equations. The approximation error of the proposed numerical scheme is analyzed. For illustrative purposes, we apply our method to a fractional differential equation for which the exact solution is computed, as well as to a nonlinear problem for which no exact solution is known. The numerical simulations show that the proposed method is very efficient, highly accurate and converges quickly.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.