Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Periodic Vibration Gaussian: Dynamic Urban Scene Reconstruction and Real-time Rendering (2311.18561v2)

Published 30 Nov 2023 in cs.CV

Abstract: Modeling dynamic, large-scale urban scenes is challenging due to their highly intricate geometric structures and unconstrained dynamics in both space and time. Prior methods often employ high-level architectural priors, separating static and dynamic elements, resulting in suboptimal capture of their synergistic interactions. To address this challenge, we present a unified representation model, called Periodic Vibration Gaussian (PVG). PVG builds upon the efficient 3D Gaussian splatting technique, originally designed for static scene representation, by introducing periodic vibration-based temporal dynamics. This innovation enables PVG to elegantly and uniformly represent the characteristics of various objects and elements in dynamic urban scenes. To enhance temporally coherent and large scene representation learning with sparse training data, we introduce a novel temporal smoothing mechanism and a position-aware adaptive control strategy respectively. Extensive experiments on Waymo Open Dataset and KITTI benchmarks demonstrate that PVG surpasses state-of-the-art alternatives in both reconstruction and novel view synthesis for both dynamic and static scenes. Notably, PVG achieves this without relying on manually labeled object bounding boxes or expensive optical flow estimation. Moreover, PVG exhibits 900-fold acceleration in rendering over the best alternative.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yurui Chen (11 papers)
  2. Chun Gu (15 papers)
  3. Junzhe Jiang (17 papers)
  4. Xiatian Zhu (139 papers)
  5. Li Zhang (693 papers)
Citations (39)

Summary

We haven't generated a summary for this paper yet.