Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Positional Information Matters for Invariant In-Context Learning: A Case Study of Simple Function Classes (2311.18194v1)

Published 30 Nov 2023 in cs.LG and cs.CL

Abstract: In-context learning (ICL) refers to the ability of a model to condition on a few in-context demonstrations (input-output examples of the underlying task) to generate the answer for a new query input, without updating parameters. Despite the impressive ICL ability of LLMs, it has also been found that ICL in LLMs is sensitive to input demonstrations and limited to short context lengths. To understand the limitations and principles for successful ICL, we conduct an investigation with ICL linear regression of transformers. We characterize several Out-of-Distribution (OOD) cases for ICL inspired by realistic LLM ICL failures and compare transformers with DeepSet, a simple yet powerful architecture for ICL. Surprisingly, DeepSet outperforms transformers across a variety of distribution shifts, implying that preserving permutation invariance symmetry to input demonstrations is crucial for OOD ICL. The phenomenon specifies a fundamental requirement by ICL, which we termed as ICL invariance. Nevertheless, the positional encodings in LLMs will break ICL invariance. To this end, we further evaluate transformers with identical positional encodings and find preserving ICL invariance in transformers achieves state-of-the-art performance across various ICL distribution shifts

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: