Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Effective Universal Polynomial Basis for Spectral Graph Neural Networks (2311.18177v2)

Published 30 Nov 2023 in cs.LG, cs.SI, and eess.SP

Abstract: Spectral Graph Neural Networks (GNNs), also referred to as graph filters have gained increasing prevalence for heterophily graphs. Optimal graph filters rely on Laplacian eigendecomposition for Fourier transform. In an attempt to avert the prohibitive computations, numerous polynomial filters by leveraging distinct polynomials have been proposed to approximate the desired graph filters. However, polynomials in the majority of polynomial filters are predefined and remain fixed across all graphs, failing to accommodate the diverse heterophily degrees across different graphs. To tackle this issue, we first investigate the correlation between polynomial bases of desired graph filters and the degrees of graph heterophily via a thorough theoretical analysis. Afterward, we develop an adaptive heterophily basis by incorporating graph heterophily degrees. Subsequently, we integrate this heterophily basis with the homophily basis, creating a universal polynomial basis UniBasis. In consequence, we devise a general polynomial filter UniFilter. Comprehensive experiments on both real-world and synthetic datasets with varying heterophily degrees significantly support the superiority of UniFilter, demonstrating the effectiveness and generality of UniBasis, as well as its promising capability as a new method for graph analysis.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.