Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quantification of cardiac capillarization in single-immunostained myocardial slices using weakly supervised instance segmentation (2311.18173v1)

Published 30 Nov 2023 in eess.IV, cs.CE, and cs.CV

Abstract: Decreased myocardial capillary density has been reported as an important histopathological feature associated with various heart disorders. Quantitative assessment of cardiac capillarization typically involves double immunostaining of cardiomyocytes (CMs) and capillaries in myocardial slices. In contrast, single immunostaining of basement membrane components is a straightforward approach to simultaneously label CMs and capillaries, presenting fewer challenges in background staining. However, subsequent image analysis always requires manual work in identifying and segmenting CMs and capillaries. Here, we developed an image analysis tool, AutoQC, to automatically identify and segment CMs and capillaries in immunofluorescence images of collagen type IV, a predominant basement membrane protein within the myocardium. In addition, commonly used capillarization-related measurements can be derived from segmentation masks. AutoQC features a weakly supervised instance segmentation algorithm by leveraging the power of a pre-trained segmentation model via prompt engineering. AutoQC outperformed YOLOv8-Seg, a state-of-the-art instance segmentation model, in both instance segmentation and capillarization assessment. Furthermore, the training of AutoQC required only a small dataset with bounding box annotations instead of pixel-wise annotations, leading to a reduced workload during network training. AutoQC provides an automated solution for quantifying cardiac capillarization in basement-membrane-immunostained myocardial slices, eliminating the need for manual image analysis once it is trained.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.