Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Regulation of Dynamical Systems to Solutions of Constrained Optimization Problems (2311.18020v2)

Published 29 Nov 2023 in eess.SY, cs.SY, and math.OC

Abstract: This paper considers the problem of regulating a dynamical system to equilibria that are defined as solutions of an input- and state-constrained optimization problem. To solve this regulation task, we design a state feedback controller based on a continuous approximation of the projected gradient flow. We first show that the equilibria of the interconnection between the plant and the proposed controller correspond to critical points of the constrained optimization problem. We then derive sufficient conditions to ensure that, for the closed-loop system, isolated locally optimal solutions of the optimization problem are locally exponentially stable and show that input constraints are satisfied at all times by identifying an appropriate forward-invariant set.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. N. Li, C. Zhao, and L. Chen, “Connecting automatic generation control and economic dispatch from an optimization view,” IEEE Trans. on Control of Network Systems, vol. 3, no. 3, pp. 254–264, 2015.
  2. G. Bianchin, J. Cortés, J. I. Poveda, and E. Dall’Anese, “Time-varying optimization of LTI systems via projected primal-dual gradient flows,” IEEE Trans. on Control of Networked Systems, 2021.
  3. G. Carnevale, N. Mimmo, and G. Notarstefano, “Aggregative feedback optimization for distributed cooperative robotics,” IFAC-PapersOnLine, vol. 55, no. 13, pp. 7–12, 2022.
  4. A. Jokic, M. Lazar, and P. P.-J. Van Den Bosch, “On constrained steady-state regulation: Dynamic KKT controllers,” IEEE Trans. on Automatic Control, vol. 54, no. 9, pp. 2250–2254, 2009.
  5. F. D. Brunner, H.-B. Dürr, and C. Ebenbauer, “Feedback design for multi-agent systems: A saddle point approach,” in IEEE Conference on Decision and Control, 2012, pp. 3783–3789.
  6. K. Hirata, J. P. Hespanha, and K. Uchida, “Real-time pricing leading to optimal operation under distributed decision makings,” in American Control Conference, Portland, OR, June 2014.
  7. L. S. Lawrence, J. W. Simpson-Porco, and E. Mallada, “Linear-convex optimal steady-state control,” IEEE Trans. on Automatic Control, vol. 66, no. 11, pp. 5377–5384, 2020.
  8. M. Colombino, E. Dall’Anese, and A. Bernstein, “Online optimization as a feedback controller: Stability and tracking,” IEEE Trans. on Control of Networked Systems, vol. 7, no. 1, pp. 422–432, 2020.
  9. A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler, “Timescale separation in autonomous optimization,” IEEE Trans. on Automatic Control, vol. 66, no. 2, pp. 611–624, 2021.
  10. M. Nonhoff and M. A. Müller, “An online convex optimization algorithm for controlling linear systems with state and input constraints,” in American Control Conference, 2021, pp. 2523–2528.
  11. L. Cothren, G. Bianchin, and E. Dall’Anese, “Online optimization of dynamical systems with deep learning perception,” IEEE Open Journal of Control Systems, vol. 1, pp. 306–321, 2022.
  12. A. Allibhoy and J. Cortés, “Control barrier function-based design of gradient flows for constrained nonlinear programming,” IEEE Trans. on Automatic Control, vol. 69, no. 6, 2024.
  13. H. K. Khalil, “Nonlinear systems,” Prentice Hall, 2002.
  14. A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler, “Corrigendum to:“timescale separation in autonomous optimization”,” IEEE Trans. on Automatic Control, vol. 66, no. 12, pp. 6197–6198, 2021.
  15. A. V. Fiacco, “Sensitivity analysis for nonlinear programming using penalty methods,” Mathematical Programming, vol. 10, no. 1, pp. 287–311, 1976.
  16. J. Liu, “Sensitivity analysis in nonlinear programs and variational inequalities via continuous selections,” SIAM Journal on Control and Optimization, vol. 33, no. 4, pp. 1040–1060, 1995.
  17. M. Nagumo, “Über die lage der integralkurven gewöhnlicher differentialgleichungen,” Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, vol. 24, pp. 551–559, 1942.
Citations (2)

Summary

We haven't generated a summary for this paper yet.