Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Leveraging VLM-Based Pipelines to Annotate 3D Objects (2311.17851v2)

Published 29 Nov 2023 in cs.CV

Abstract: Pretrained vision LLMs (VLMs) present an opportunity to caption unlabeled 3D objects at scale. The leading approach to summarize VLM descriptions from different views of an object (Luo et al., 2023) relies on a LLM (GPT4) to produce the final output. This text-based aggregation is susceptible to hallucinations as it merges potentially contradictory descriptions. We propose an alternative algorithm to marginalize over factors such as the viewpoint that affect the VLM's response. Instead of merging text-only responses, we utilize the VLM's joint image-text likelihoods. We show our probabilistic aggregation is not only more reliable and efficient, but sets the SoTA on inferring object types with respect to human-verified labels. The aggregated annotations are also useful for conditional inference; they improve downstream predictions (e.g., of object material) when the object's type is specified as an auxiliary text-based input. Such auxiliary inputs allow ablating the contribution of visual reasoning over visionless reasoning in an unsupervised setting. With these supervised and unsupervised evaluations, we show how a VLM-based pipeline can be leveraged to produce reliable annotations for 764K objects from the Objaverse dataset.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com