Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Receler: Reliable Concept Erasing of Text-to-Image Diffusion Models via Lightweight Erasers (2311.17717v3)

Published 29 Nov 2023 in cs.CV and cs.LG

Abstract: Concept erasure in text-to-image diffusion models aims to disable pre-trained diffusion models from generating images related to a target concept. To perform reliable concept erasure, the properties of robustness and locality are desirable. The former refrains the model from producing images associated with the target concept for any paraphrased or learned prompts, while the latter preserves its ability in generating images with non-target concepts. In this paper, we propose Reliable Concept Erasing via Lightweight Erasers (Receler). It learns a lightweight Eraser to perform concept erasing while satisfying the above desirable properties through the proposed concept-localized regularization and adversarial prompt learning scheme. Experiments with various concepts verify the superiority of Receler over previous methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (27)

Summary

We haven't generated a summary for this paper yet.