How to Build an Adaptive AI Tutor for Any Course Using Knowledge Graph-Enhanced Retrieval-Augmented Generation (KG-RAG) (2311.17696v7)
Abstract: Integrating LLMs in Intelligent Tutoring Systems (ITS) presents transformative opportunities for personalized education. However, current implementations face two critical challenges: maintaining factual accuracy and delivering coherent, context-aware instruction. While Retrieval-Augmented Generation (RAG) partially addresses these issues, its reliance on pure semantic similarity limits its effectiveness in educational contexts where conceptual relationships are crucial. This paper introduces Knowledge Graph-enhanced Retrieval-Augmented Generation (KG-RAG), a novel framework that integrates structured knowledge representation with context-aware retrieval to enable more effective AI tutoring. We present three key contributions: (1) a novel architecture that grounds AI responses in structured domain knowledge, (2) empirical validation through controlled experiments (n=76) demonstrating significant learning improvements (35% increase in assessment scores, p<0.001), and (3) a comprehensive implementation framework addressing practical deployment considerations. These results establish KG-RAG as a robust solution for developing adaptable AI tutoring systems across diverse educational contexts.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.