Papers
Topics
Authors
Recent
2000 character limit reached

GSE: Group-wise Sparse and Explainable Adversarial Attacks (2311.17434v4)

Published 29 Nov 2023 in cs.CV, cs.CR, cs.LG, and math.OC

Abstract: Sparse adversarial attacks fool deep neural networks (DNNs) through minimal pixel perturbations, often regularized by the $\ell_0$ norm. Recent efforts have replaced this norm with a structural sparsity regularizer, such as the nuclear group norm, to craft group-wise sparse adversarial attacks. The resulting perturbations are thus explainable and hold significant practical relevance, shedding light on an even greater vulnerability of DNNs. However, crafting such attacks poses an optimization challenge, as it involves computing norms for groups of pixels within a non-convex objective. We address this by presenting a two-phase algorithm that generates group-wise sparse attacks within semantically meaningful areas of an image. Initially, we optimize a quasinorm adversarial loss using the $1/2-$quasinorm proximal operator tailored for non-convex programming. Subsequently, the algorithm transitions to a projected Nesterov's accelerated gradient descent with $2-$norm regularization applied to perturbation magnitudes. Rigorous evaluations on CIFAR-10 and ImageNet datasets demonstrate a remarkable increase in group-wise sparsity, e.g., $50.9\%$ on CIFAR-10 and $38.4\%$ on ImageNet (average case, targeted attack). This performance improvement is accompanied by significantly faster computation times, improved explainability, and a $100\%$ attack success rate.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com