Emergent Mind

New Approximation Bounds for Small-Set Vertex Expansion

(2311.17001)
Published Nov 28, 2023 in cs.DS

Abstract

The vertex expansion of the graph is a fundamental graph parameter. Given a graph $G=(V,E)$ and a parameter $\delta \in (0,1/2]$, its $\delta$-Small-Set Vertex Expansion (SSVE) is defined as [ \min_{S : |S| = \delta |V|} \frac{|{\partialV(S)}|}{ \min { |S|, |Sc| } } ] where $\partialV(S)$ is the vertex boundary of a set $S$. The SSVE~problem, in addition to being of independent interest as a natural graph partitioning problem, is also of interest due to its connections to the Strong Unique Games problem. We give a randomized algorithm running in time $n{{\sf poly}(1/\delta)}$, which outputs a set $S$ of size $\Theta(\delta n)$, having vertex expansion at most [ \max\left(O(\sqrt{\phi* \log d \log (1/\delta)}) , \tilde{O}(d\log2(1/\delta)) \cdot \phi* \right), ] where $d$ is the largest vertex degree of the graph, and $\phi*$ is the optimal $\delta$-SSVE. The previous best-known guarantees for this were the bi-criteria bounds of $\tilde{O}(1/\delta)\sqrt{\phi* \log d}$ and $\tilde{O}(1/\delta)\phi* \sqrt{\log n}$ due to Louis-Makarychev [TOC'16]. Our algorithm uses the basic SDP relaxation of the problem augmented with ${\rm poly}(1/\delta)$ rounds of the Lasserre/SoS hierarchy. Our rounding algorithm is a combination of the rounding algorithms of Raghavendra-Tan [SODA'12] and Austrin-Benabbas-Georgiou [SODA'13]. A key component of our analysis is novel Gaussian rounding lemma for hyperedges which might be of independent interest.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.