Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Digital Twin-Enhanced Deep Reinforcement Learning for Resource Management in Networks Slicing (2311.16876v1)

Published 28 Nov 2023 in cs.NI and cs.LG

Abstract: Network slicing-based communication systems can dynamically and efficiently allocate resources for diversified services. However, due to the limitation of the network interface on channel access and the complexity of the resource allocation, it is challenging to achieve an acceptable solution in the practical system without precise prior knowledge of the dynamics probability model of the service requests. Existing work attempts to solve this problem using deep reinforcement learning (DRL), however, such methods usually require a lot of interaction with the real environment in order to achieve good results. In this paper, a framework consisting of a digital twin and reinforcement learning agents is present to handle the issue. Specifically, we propose to use the historical data and the neural networks to build a digital twin model to simulate the state variation law of the real environment. Then, we use the data generated by the network slicing environment to calibrate the digital twin so that it is in sync with the real environment. Finally, DRL for slice optimization optimizes its own performance in this virtual pre-verification environment. We conducted an exhaustive verification of the proposed digital twin framework to confirm its scalability. Specifically, we propose to use loss landscapes to visualize the generalization of DRL solutions. We explore a distillation-based optimization scheme for lightweight slicing strategies. In addition, we also extend the framework to offline reinforcement learning, where solutions can be used to obtain intelligent decisions based solely on historical data. Numerical simulation experiments show that the proposed digital twin can significantly improve the performance of the slice optimization strategy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. K. Katsalis, N. Nikaein, E. Schiller, A. Ksentini, and T. Braun, “Network slices toward 5G communications: Slicing the LTE network,” IEEE Communications Magazine, vol. 55, no. 8, pp. 146–154, 2017.
  2. M. Series, “Minimum requirements related to technical performance for imt-2020 radio interface(s),” Report, pp. 2410–0, 2017.
  3. X. You, Y. Huang, S. Liu, D. Wang, J. Ma, C. Zhang, H. Zhan, C. Zhang, J. Zhang, Z. Liu, J. Li, M. Zhu, J. You, D. Liu, Y. Cao, S. He, G. He, F. Yang, Y. Liu, J. Wu, J. Lu, G. Li, X. Chen, W. Chen, and W. Gao, “Toward 6g TK⁢μTK𝜇\text{TK}\muTK italic_μ extreme connectivity: Architecture, key technologies and experiments,” IEEE Wireless Communications, vol. 30, no. 3, pp. 86–95, 2023.
  4. Y. Hua, R. Li, Z. Zhao, X. Chen, and H. Zhang, “GAN-powered deep distributional reinforcement learning for resource management in network slicing,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 2, pp. 334–349, 2019.
  5. X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network slicing in 5G: Survey and challenges,” IEEE Communications Magazine, vol. 55, no. 5, pp. 94–100, 2017.
  6. H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C. M. Leung, “Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges,” IEEE Communications Magazine, vol. 55, no. 8, pp. 138–145, 2017.
  7. X. Zhou, R. Li, T. Chen, and H. Zhang, “Network slicing as a service: enabling enterprises’ own software-defined cellular networks,” IEEE Communications Magazine, vol. 54, no. 7, pp. 146–153, 2016.
  8. X. Li, M. Samaka, H. A. Chan, D. Bhamare, L. Gupta, C. Guo, and R. Jain, “Network slicing for 5G: Challenges and opportunities,” IEEE Internet Computing, vol. 21, no. 5, pp. 20–27, 2017.
  9. H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C. Leung, “Network slicing based 5G and future mobile networks: mobility, resource management, and challenges,” IEEE communications magazine, vol. 55, no. 8, pp. 138–145, 2017.
  10. P. L. Vo, M. N. H. Nguyen, T. A. Le, and N. H. Tran, “Slicing the edge: Resource allocation for RAN network slicing,” IEEE Wireless Communications Letters, vol. 7, no. 6, pp. 970–973, 2018.
  11. Y. Sun, G. Feng, L. Zhang, M. Yan, S. Qin, and M. A. Imran, “User access control and bandwidth allocation for slice-based 5G and-beyond radio access networks,” in ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019, pp. 1–6.
  12. C. She, C. Yang, and T. Q. S. Quek, “Cross-layer optimization for ultra-reliable and low-latency radio access networks,” IEEE Transactions on Wireless Communications, vol. 17, no. 1, pp. 127–141, 2018.
  13. J. Tang, B. Shim, and T. Q. S. Quek, “Service multiplexing and revenue maximization in sliced C-RAN incorporated with URLLC and multicast eMBB,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 4, pp. 881–895, 2019.
  14. Y. Liu, J. Ding, and X. Liu, “A constrained reinforcement learning based approach for network slicing,” in 2020 IEEE 28th International Conference on Network Protocols (ICNP), 2020, pp. 1–6.
  15. H. Xiang, S. Yan, and M. Peng, “A realization of fog-RAN slicing via deep reinforcement learning,” IEEE Transactions on Wireless Communications, vol. 19, no. 4, pp. 2515–2527, 2020.
  16. J. J. Alcaraz, F. Losilla, A. Zanella, and M. Zorzi, “Model-based reinforcement learning with kernels for resource allocation in RAN slices,” IEEE Transactions on Wireless Communications, vol. 22, no. 1, pp. 486–501, 2023.
  17. D. Liu, S. Xue, B. Zhao, B. Luo, and Q. Wei, “Adaptive dynamic programming for control: A survey and recent advances,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 1, pp. 142–160, 2021.
  18. W. B. Haskell, R. Jain, H. Sharma, and P. Yu, “A universal empirical dynamic programming algorithm for continuous state MDPs,” IEEE Transactions on Automatic Control, vol. 65, no. 1, pp. 115–129, 2020.
  19. L. Dang, W. Wang, C. K. Tse, F. C. M. Lau, and S. Wang, “Smooth deep reinforcement learning for power control for spectrum sharing in cognitive radios,” IEEE Transactions on Wireless Communications, vol. 21, no. 12, pp. 10 621–10 632, 2022.
  20. Y. Koda, M. Shinzaki, K. Yamamoto, T. Nishio, M. Morikura, Y. Shirato, D. Uchida, and N. Kita, “Millimeter wave communications on overhead messenger wire: Deep reinforcement learning-based predictive beam tracking,” IEEE Transactions on Cognitive Communications and Networking, vol. 7, no. 4, pp. 1216–1232, 2021.
  21. Q. Qi, J. Wang, Z. Ma, H. Sun, Y. Cao, L. Zhang, and J. Liao, “Knowledge-driven service offloading decision for vehicular edge computing: A deep reinforcement learning approach,” IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 4192–4203, 2019.
  22. R. Li, Z. Zhao, Q. Sun, C.-L. I, C. Yang, X. Chen, M. Zhao, and H. Zhang, “Deep reinforcement learning for resource management in network slicing,” IEEE Access, vol. 6, pp. 74 429–74 441, 2018.
  23. J. Li, J. Wu, C. Zhang, Q. Sun, Y. Huang, and X. You, “Hierarchical intelligent radio access network slicing for differential service level agreement guaranteeing,” IEEE Transactions on Industrial Informatics, pp. 1–13, 2023.
  24. Y. Azimi, S. Yousefi, H. Kalbkhani, and T. Kunz, “Energy-efficient deep reinforcement learning assisted resource allocation for 5G-RAN slicing,” IEEE Transactions on Vehicular Technology, vol. 71, no. 1, pp. 856–871, 2022.
  25. T. Wang, S. Chen, Y. Zhu, A. Tang, and X. Wang, “Linkslice: Fine-grained network slice enforcement based on deep reinforcement learning,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 8, pp. 2378–2394, 2022.
  26. S. Mihai, M. Yaqoob, D. V. Hung, W. Davis, P. Towakel, M. Raza, M. Karamanoglu, B. Barn, D. Shetve, R. V. Prasad, H. Venkataraman, R. Trestian, and H. X. Nguyen, “Digital twins: A survey on enabling technologies, challenges, trends and future prospects,” IEEE Communications Surveys & Tutorials, vol. 24, no. 4, pp. 2255–2291, 2022.
  27. H. Li, Z. Xu, G. Taylor, and T. Goldstein, “Visualizing the loss landscape of neural nets,” 2018. [Online]. Available: https://openreview.net/forum?id=HkmaTz-0W
  28. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  29. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  30. A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving language understanding by generative pre-training,” 2018.
  31. M. Volodymyr, K. Koray, S. David, A. A. Rusu, V. Joel, M. G. Bellemare, G. Alex, R. Martin, A. K. Fidjeland, and O. Georg, “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.
  32. H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double Q-learning,” in AAAI Conference on Artificial Intelligence, 2016.
  33. H. Chen, S. Shao, Z. Wang, Z. Shang, J. Chen, X. Ji, and X. Wu, “Bootstrap generalization ability from loss landscape perspective,” in European Conference on Computer Vision.   Springer, 2022, pp. 500–517.
  34. N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On large-batch training for deep learning: Generalization gap and sharp minima,” arXiv preprint arXiv:1609.04836, 2016.
  35. G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv preprint arXiv:1503.02531, 2015.
  36. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Zhengming Zhang (11 papers)
  2. Yongming Huang (98 papers)
  3. Cheng Zhang (388 papers)
  4. Qingbi Zheng (1 paper)
  5. Luxi Yang (34 papers)
  6. Xiaohu You (177 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.