Personalized Predictions of Glioblastoma Infiltration: Mathematical Models, Physics-Informed Neural Networks and Multimodal Scans
Abstract: Predicting the infiltration of Glioblastoma (GBM) from medical MRI scans is crucial for understanding tumor growth dynamics and designing personalized radiotherapy treatment plans.Mathematical models of GBM growth can complement the data in the prediction of spatial distributions of tumor cells. However, this requires estimating patient-specific parameters of the model from clinical data, which is a challenging inverse problem due to limited temporal data and the limited time between imaging and diagnosis. This work proposes a method that uses Physics-Informed Neural Networks (PINNs) to estimate patient-specific parameters of a reaction-diffusion PDE model of GBM growth from a single 3D structural MRI snapshot. PINNs embed both the data and the PDE into a loss function, thus integrating theory and data. Key innovations include the identification and estimation of characteristic non-dimensional parameters, a pre-training step that utilizes the non-dimensional parameters and a fine-tuning step to determine the patient specific parameters. Additionally, the diffuse domain method is employed to handle the complex brain geometry within the PINN framework. Our method is validated both on synthetic and patient datasets, and shows promise for real-time parametric inference in the clinical setting for personalized GBM treatment.
- TensorFlow: Large-scale machine learning on heterogeneous systems.
- The biology and mathematical modelling of glioma invasion: A review. Journal of the Royal Society Interface 14. doi:10.1098/rsif.2017.0490.
- Individualizing Glioma Radiotherapy Planning by Optimization of a Data and Physics Informed Discrete Loss. doi:10.48550/arXiv.2312.05063, arXiv:2312.05063.
- From Patient-Specific Mathematical Neuro-Oncology to Precision Medicine. Frontiers in Oncology 3.
- Mathematical modeling of cancer immunotherapy for personalized clinical translation. Nature Comput. Sci. 2, 785--796.
- Predictive Digital Twin for Optimizing Patient-Specific Radiotherapy Regimens under Uncertainty in High-Grade Gliomas. doi:10.48550/arXiv.2308.12429, arXiv:2308.12429.
- Randomized Newton’s Method for Solving Differential Equations Based on the Neural Network Discretization. Journal of Scientific Computing 92, 49. doi:10.1007/s10915-022-01905-9.
- Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Optics Express 28, 11618--11633. doi:10.1364/OE.384875.
- GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks. doi:10.48550/arXiv.1711.02257, arXiv:1711.02257.
- Speed Switch in Glioblastoma Growth Rate due to Enhanced Hypoxia-Induced Migration. Bulletin of Mathematical Biology 82, 43. doi:10.1007/s11538-020-00718-x.
- One-Shot Transfer Learning of Physics-Informed Neural Networks. https://arxiv.org/abs/2110.11286v2.
- Neural Parameters Estimation for Brain Tumor Growth Modeling, in: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.T., Khan, A. (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2019, Springer International Publishing, Cham. pp. 787--795. doi:10.1007/978-3-030-32245-8_87.
- Geometry-Aware Neural Solver for Fast Bayesian Calibration of Brain Tumor Models. IEEE Transactions on Medical Imaging 41, 1269--1278. doi:10.1109/TMI.2021.3136582.
- A for-loop is all you need. For solving the inverse problem in the case of personalized tumor growth modeling, in: Proceedings of the 2nd Machine Learning for Health Symposium, PMLR. pp. 566--577.
- Learn-Morph-Infer: A new way of solving the inverse problem for brain tumor modeling. Medical Image Analysis 83, 102672. doi:10.1016/j.media.2022.102672.
- In Silico Mathematical Modelling for Glioblastoma: A Critical Review and a Patient-Specific Case. Journal of Clinical Medicine 10, 2169. doi:10.3390/jcm10102169.
- Current Standards of Care in Glioblastoma Therapy, in: De Vleeschouwer, S. (Ed.), Glioblastoma. Codon Publications, Brisbane (AU).
- SVD-PINNs: Transfer Learning of Physics-Informed Neural Networks via Singular Value Decomposition. https://arxiv.org/abs/2211.08760v1. doi:10.1109/SSCI51031.2022.10022281.
- An inverse problem formulation for parameter estimation of a reaction–diffusion model of low grade gliomas. Journal of Mathematical Biology 72, 409--433. doi:10.1007/s00285-015-0888-x.
- Dose-Dense Temozolomide for Newly Diagnosed Glioblastoma: A Randomized Phase III Clinical Trial. Journal of Clinical Oncology 31, 4085--4091. doi:10.1200/JCO.2013.49.6968.
- Multi-Loss Weighting with Coefficient of Variations. doi:10.48550/arXiv.2009.01717, arXiv:2009.01717.
- Radiation therapy treatment planning in supratentorial glioblastoma multiforme: An analysis based on post mortem topographic anatomy with ct correlations. International Journal of Radiation Oncology, Biology, Physics 17, 1347--1350. doi:10.1016/0360-3016(89)90548-8.
- Gauss Newton method for solving variational problems of PDEs with neural network discretizaitons. arXiv:2306.08727.
- The evolution of mathematical modeling of glioma proliferation and invasion. Journal of Neuropathology and Experimental Neurology 66, 1--9. doi:10.1097/nen.0b013e31802d9000.
- A robust framework for soft tissue simulations with application to modeling brain tumor mass effect in 3D MR images. Physics in Medicine and Biology 52, 6893--6908. doi:10.1088/0031-9155/52/23/008.
- An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects. Journal of Mathematical Biology 56, 793--825. doi:10.1007/s00285-007-0139-x.
- HomPINNs: Homotopy physics-informed neural networks for learning multiple solutions of nonlinear elliptic differential equations. Computers & Mathematics with Applications 121, 62--73. doi:10.1016/j.camwa.2022.07.002.
- [18F]-fluoro-ethyl-l-tyrosine PET: A valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro-Oncology 15, 341--351. doi:10.1093/neuonc/nos300.
- Physics-informed neural networks for inverse problems in supersonic flows. Journal of Computational Physics 466, 111402. doi:10.1016/j.jcp.2022.111402.
- Deep learning of inverse water waves problems using multi-fidelity data: Application to Serre–Green–Naghdi equations. Ocean Engineering 248, 110775. doi:10.1016/j.oceaneng.2022.110775.
- Data-driven spatio-temporal modelling of glioblastoma. Royal Society Open Science 10, 221444. doi:10.1098/rsos.221444.
- Optimizing a DIscrete Loss (ODIL) to solve forward and inverse problems for partial differential equations using machine learning tools. doi:10.48550/arXiv.2205.04611, arXiv:2205.04611.
- Physics-informed machine learning. Nature Reviews Physics 3, 422--440. doi:10.1038/s42254-021-00314-5.
- DPM: A Novel Training Method for Physics-Informed Neural Networks in Extrapolation. doi:10.48550/arXiv.2012.02681, arXiv:2012.02681.
- Extrapolating glioma invasion margin in brain magnetic resonance images: Suggesting new irradiation margins. Medical Image Analysis 14, 111--125. doi:10.1016/j.media.2009.11.005.
- Image Guided Personalization of Reaction-Diffusion Type Tumor Growth Models Using Modified Anisotropic Eikonal Equations. IEEE Transactions on Medical Imaging 29, 77--95. doi:10.1109/TMI.2009.2026413.
- Characterizing possible failure modes in physics-informed neural networks. doi:10.48550/arXiv.2109.01050, arXiv:2109.01050.
- Molecular imaging of gliomas with PET: Opportunities and limitations. Neuro-Oncology 13, 806--819. doi:10.1093/neuonc/nor054.
- MRI based bayesian personalization of a tumor growth model. IEEE Transactions on Medical Imaging 35, 2329--2339. doi:10.1109/TMI.2016.2561098.
- Analysis of the diffuse-domain method for solving PDEs in complex geometries. Communications in Mathematical Sciences 13, 1473--1500. doi:10.4310/CMS.2015.v13.n6.a6, arXiv:1407.7480.
- Solving pdes in complex geometries: A diffused domain approach. Communications in mathematical sciences 7, 81--107.
- Fourier Neural Operator for Parametric Partial Differential Equations. https://arxiv.org/abs/2010.08895v3.
- Personalized Radiotherapy Design for Glioblastoma: Integrating Mathematical Tumor Models, Multimodal Scans, and Bayesian Inference. IEEE Transactions on Medical Imaging 38, 1875--1884. doi:10.1109/TMI.2019.2902044.
- Modelling glioma progression, mass effect and intracranial pressure in patient anatomy. Journal of the Royal Society Interface 19, 20210922. doi:10.1098/rsif.2021.0922.
- Patient-specific, mechanistic models of tumor growth incorporating artificial intelligence and big data.
- Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature Machine Intelligence 3, 218--229. doi:10.1038/s42256-021-00302-5.
- DeepXDE: A Deep Learning Library for Solving Differential Equations. SIAM Review 63, 208--228. doi:10.1137/19M1274067.
- Bifurcation analysis of a free boundary model of vascular tumor growth with a necrotic core and chemotaxis. Journal of Mathematical Biology 86, 19. doi:10.1007/s00285-022-01862-9.
- Nonlinear simulation of vascular tumor growth with chemotaxis and the control of necrosis. Journal of Computational Physics 459, 111153. doi:10.1016/j.jcp.2022.111153.
- Multiscale modelling and nonlinear simulation of vascular tumour growth. Journal of mathematical biology 58, 765--798. doi:10.1007/s00285-008-0216-9.
- Inverse Dirichlet weighting enables reliable training of physics informed neural networks. Machine Learning: Science and Technology 3, 015026. doi:10.1088/2632-2153/ac3712.
- Biophysical modeling of brain tumor progression: From unconditionally stable explicit time integration to an inverse problem with parabolic PDE constraints for model calibration. Medical Physics 39, 4444--4459. doi:10.1118/1.4722749.
- Deep Learning for Reaction-Diffusion Glioma Growth Modeling: Towards a Fully Personalized Model? Cancers 14, 2530. doi:10.3390/cancers14102530.
- A Generative Approach for Image-Based Modeling of Tumor Growth. Information processing in medical imaging : proceedings of the ... conference 22, 735--747.
- [18F]FET PET Uptake Indicates High Tumor and Low Necrosis Content in Brain Metastasis. Cancers 13, 355. doi:10.3390/cancers13020355.
- Peritumoral Edema in Gliomas: A Review of Mechanisms and Management. Biomedicines 11, 2731. doi:10.3390/biomedicines11102731.
- Estimating Glioblastoma Biophysical Growth Parameters Using Deep Learning Regression. Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop) 12658, 157--167. doi:10.1007/978-3-030-72084-1_15.
- Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics 378, 686--707. doi:10.1016/j.jcp.2018.10.045.
- Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: A mathematical modeling approach. Physics in Medicine & Biology 55, 3271. doi:10.1088/0031-9155/55/12/001.
- The 2019 mathematical oncology roadmap. Physical Biology 16, 041005. doi:10.1088/1478-3975/ab1a09.
- A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18F-FMISO-PET. Journal of The Royal Society Interface 12, 20141174. doi:10.1098/rsif.2014.1174.
- Physics-Informed Neural Networks for Brain Hemodynamic Predictions Using Medical Imaging. IEEE Transactions on Medical Imaging 41, 2285--2303. doi:10.1109/TMI.2022.3161653.
- A Multilayer Grow-or-Go Model for GBM: Effects of Invasive Cells and Anti-Angiogenesis on Growth. Bulletin of Mathematical Biology 76, 2306--2333. doi:10.1007/s11538-014-0007-y.
- Fully Automatic Calibration of Tumor-Growth Models Using a Single mpMRI Scan. IEEE Transactions on Medical Imaging 40, 193--204. doi:10.1109/TMI.2020.3024264.
- Image-Driven Biophysical Tumor Growth Model Calibration. SIAM Journal on Scientific Computing 42, B549--B580. doi:10.1137/19M1275280.
- Partial-Volume Effect in PET Tumor Imaging. Journal of Nuclear Medicine 48, 932--945. doi:10.2967/jnumed.106.035774.
- Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: Report of Radiation Therapy Oncology Group 93-05 protocol. International Journal of Radiation Oncology Biology Physics 60, 853--860. doi:10.1016/j.ijrobp.2004.04.011.
- Correlation of F-18-fluoro-ethyl-tyrosin uptake with vascular and cell density in non-contrast-enhancing gliomas. Journal of Neuro-Oncology 88, 205--210. doi:10.1007/s11060-008-9551-3.
- High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Annals of Oncology 25, 93--101. doi:10.1093/annonc/mdu050.
- Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England Journal of Medicine 352, 987--996. doi:10.1056/NEJMoa043330.
- Ensemble Inversion for Brain Tumor Growth Models With Mass Effect. IEEE Transactions on Medical Imaging 42, 982--995. doi:10.1109/TMI.2022.3221913.
- Simulation of glioblastoma growth using a 3D multispecies tumor model with mass effect. Journal of mathematical biology 79, 941--967. doi:10.1007/s00285-019-01383-y.
- Multiatlas Calibration of Biophysical Brain Tumor Growth Models with Mass Effect. Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention 12262, 551--560. doi:10.1007/978-3-030-59713-9_53.
- Where did the tumor start? An inverse solver with sparse localization for tumor growth models. Inverse Problems. An International Journal on the Theory and Practice of Inverse Problems, Inverse Methods and Computerized Inversion of Data 36. doi:10.1088/1361-6420/ab649c.
- A quantitative model for differential motility of gliomas in grey and white matter. Cell Proliferation 33, 317--329. doi:10.1046/j.1365-2184.2000.00177.x.
- IDH–wild-type glioblastoma cell density and infiltration distribution influence on supramarginal resection and its impact on overall survival: A mathematical model. Journal of Neurosurgery 136, 1567--1575. doi:10.3171/2021.6.JNS21925.
- Modeling of Glioma Growth With Mass Effect by Longitudinal Magnetic Resonance Imaging. IEEE transactions on bio-medical engineering 68, 3713--3724. doi:10.1109/TBME.2021.3085523.
- Radiotherapy planning for glioblastoma based on a tumor growth model: Improving target volume delineation. Physics in Medicine & Biology 59, 747. doi:10.1088/0031-9155/59/3/747.
- Physics-informed neural networks for myocardial perfusion MRI quantification. Medical Image Analysis 78, 102399. doi:10.1016/j.media.2022.102399.
- Data-Driven Simulation of Fisher–Kolmogorov Tumor Growth Models Using Dynamic Mode Decomposition. Journal of Biomechanical Engineering 144. doi:10.1115/1.4054925.
- Respecting causality is all you need for training physics-informed neural networks. doi:10.48550/arXiv.2203.07404, arXiv:2203.07404.
- Understanding and Mitigating Gradient Flow Pathologies in Physics-Informed Neural Networks. SIAM Journal on Scientific Computing 43, A3055--A3081. doi:10.1137/20M1318043.
- When and why PINNs fail to train: A neural tangent kernel perspective. Journal of Computational Physics 449, 110768. doi:10.1016/j.jcp.2021.110768.
- Integrating mechanism-based modeling with biomedical imaging to build practical digital twins for clinical oncology. Biophysics Reviews 3, 021304. doi:10.1063/5.0086789.
- Transfer learning based physics-informed neural networks for solving inverse problems in engineering structures under different loading scenarios. Computer Methods in Applied Mechanics and Engineering 405, 115852. doi:10.1016/j.cma.2022.115852.
- 3D mathematical modeling of glioblastoma suggests that transdifferentiated vascular endothelial cells mediate resistance to current standard-of-care therapy. Cancer Research 77, 4171--4184. doi:10.1158/0008-5472.CAN-16-3094.
- B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. Journal of Computational Physics 425, 109913. doi:10.1016/j.jcp.2020.109913.
- HomPINNs: Homotopy physics-informed neural networks for solving the inverse problems of nonlinear differential equations with multiple solutions. doi:10.48550/arXiv.2304.02811, arXiv:2304.02811.
- Accelerating Parameter Inference in Diffusion-Reaction Models of Glioblastoma Using Physics-Informed Neural Networks. SIAM Undergraduate Research Online 15. doi:10.1137/22S1472814.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.