Papers
Topics
Authors
Recent
2000 character limit reached

$Z^*$: Zero-shot Style Transfer via Attention Rearrangement (2311.16491v1)

Published 25 Nov 2023 in cs.CV

Abstract: Despite the remarkable progress in image style transfer, formulating style in the context of art is inherently subjective and challenging. In contrast to existing learning/tuning methods, this study shows that vanilla diffusion models can directly extract style information and seamlessly integrate the generative prior into the content image without retraining. Specifically, we adopt dual denoising paths to represent content/style references in latent space and then guide the content image denoising process with style latent codes. We further reveal that the cross-attention mechanism in latent diffusion models tends to blend the content and style images, resulting in stylized outputs that deviate from the original content image. To overcome this limitation, we introduce a cross-attention rearrangement strategy. Through theoretical analysis and experiments, we demonstrate the effectiveness and superiority of the diffusion-based $\underline{Z}$ero-shot $\underline{S}$tyle $\underline{T}$ransfer via $\underline{A}$ttention $\underline{R}$earrangement, Z-STAR.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.