Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Hierarchical Training Paradigm for Antibody Structure-sequence Co-design (2311.16126v1)

Published 30 Oct 2023 in q-bio.BM, cs.CE, and cs.LG

Abstract: Therapeutic antibodies are an essential and rapidly expanding drug modality. The binding specificity between antibodies and antigens is decided by complementarity-determining regions (CDRs) at the tips of these Y-shaped proteins. In this paper, we propose a hierarchical training paradigm (HTP) for the antibody sequence-structure co-design. HTP consists of four levels of training stages, each corresponding to a specific protein modality within a particular protein domain. Through carefully crafted tasks in different stages, HTP seamlessly and effectively integrates geometric graph neural networks (GNNs) with large-scale protein LLMs to excavate evolutionary information from not only geometric structures but also vast antibody and non-antibody sequence databases, which determines ligand binding pose and strength. Empirical experiments show that HTP sets the new state-of-the-art performance in the co-design problem as well as the fix-backbone design. Our research offers a hopeful path to unleash the potential of deep generative architectures and seeks to illuminate the way forward for the antibody sequence and structure co-design challenge.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)