Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Semantic Generative Augmentations for Few-Shot Counting (2311.16122v1)

Published 26 Oct 2023 in cs.CV, cs.AI, and cs.LG

Abstract: With the availability of powerful text-to-image diffusion models, recent works have explored the use of synthetic data to improve image classification performances. These works show that it can effectively augment or even replace real data. In this work, we investigate how synthetic data can benefit few-shot class-agnostic counting. This requires to generate images that correspond to a given input number of objects. However, text-to-image models struggle to grasp the notion of count. We propose to rely on a double conditioning of Stable Diffusion with both a prompt and a density map in order to augment a training dataset for few-shot counting. Due to the small dataset size, the fine-tuned model tends to generate images close to the training images. We propose to enhance the diversity of synthesized images by exchanging captions between images thus creating unseen configurations of object types and spatial layout. Our experiments show that our diversified generation strategy significantly improves the counting accuracy of two recent and performing few-shot counting models on FSC147 and CARPK.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.