MOT-DETR: 3D Single Shot Detection and Tracking with Transformers to build 3D representations for Agro-Food Robots (2311.15674v3)
Abstract: In the current demand for automation in the agro-food industry, accurately detecting and localizing relevant objects in 3D is essential for successful robotic operations. However, this is a challenge due the presence of occlusions. Multi-view perception approaches allow robots to overcome occlusions, but a tracking component is needed to associate the objects detected by the robot over multiple viewpoints. Most multi-object tracking (MOT) algorithms are designed for high frame rate sequences and struggle with the occlusions generated by robots' motions and 3D environments. In this paper, we introduce MOT-DETR, a novel approach to detect and track objects in 3D over time using a combination of convolutional networks and transformers. Our method processes 2D and 3D data, and employs a transformer architecture to perform data fusion. We show that MOT-DETR outperforms state-of-the-art multi-object tracking methods. Furthermore, we prove that MOT-DETR can leverage 3D data to deal with long-term occlusions and large frame-to-frame distances better than state-of-the-art methods. Finally, we show how our method is resilient to camera pose noise that can affect the accuracy of point clouds. The implementation of MOT-DETR can be found here: https://github.com/drapado/mot-detr
- G. Kootstra, X. Wang, P. M. Blok, J. Hemming, and E. van Henten, “Selective Harvesting Robotics: Current Research, Trends, and Future Directions,” Current Robotics Reports, vol. 2, no. 1, pp. 95–104, Mar. 2021. [Online]. Available: https://doi.org/10.1007/s43154-020-00034-1
- J. Crowley, “Dynamic world modeling for an intelligent mobile robot using a rotating ultra-sonic ranging device,” in Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2. St. Louis, MO, USA: Institute of Electrical and Electronics Engineers, 1985, pp. 128–135. [Online]. Available: http://ieeexplore.ieee.org/document/1087380/
- J. Elfring, S. van den Dries, M. van de Molengraft, and M. Steinbuch, “Semantic world modeling using probabilistic multiple hypothesis anchoring,” Robotics and Autonomous Systems, vol. 61, no. 2, pp. 95–105, Feb. 2013. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0921889012002163
- B. Arad, J. Balendonck, R. Barth, O. Ben‐Shahar, Y. Edan, T. Hellström, J. Hemming, P. Kurtser, O. Ringdahl, T. Tielen, and B. v. Tuijl, “Development of a sweet pepper harvesting robot,” Journal of Field Robotics, vol. n/a, no. n/a, 2020, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21937. [Online]. Available: https://www.onlinelibrary.wiley.com/doi/abs/10.1002/rob.21937
- A. K. Burusa, J. Scholten, D. R. Rincon, X. Wang, E. J. van Henten, and G. Kootstra, “Efficient Search and Detection of Relevant Plant Parts using Semantics-Aware Active Vision,” June 2023, arXiv:2306.09801 [cs]. [Online]. Available: http://arxiv.org/abs/2306.09801
- L. L. Wong, L. P. Kaelbling, and T. Lozano-Pérez, “Data association for semantic world modeling from partial views,” The International Journal of Robotics Research, vol. 34, no. 7, pp. 1064–1082, June 2015, publisher: SAGE Publications Ltd STM. [Online]. Available: https://doi.org/10.1177/0278364914559754
- A. Persson, P. Z. D. Martires, A. Loutfi, and L. De Raedt, “Semantic Relational Object Tracking,” IEEE Transactions on Cognitive and Developmental Systems, vol. 12, no. 1, pp. 84–97, Mar. 2020, arXiv: 1902.09937. [Online]. Available: http://arxiv.org/abs/1902.09937
- D. Rapado-Rincón, E. J. van Henten, and G. Kootstra, “Development and evaluation of automated localisation and reconstruction of all fruits on tomato plants in a greenhouse based on multi-view perception and 3D multi-object tracking,” Biosystems Engineering, vol. 231, pp. 78–91, July 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1537511023001162
- A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple Online and Realtime Tracking,” 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464–3468, Sept. 2016, arXiv: 1602.00763. [Online]. Available: http://arxiv.org/abs/1602.00763
- N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a deep association metric,” in 2017 IEEE International Conference on Image Processing (ICIP), Sept. 2017, pp. 3645–3649, iSSN: 2381-8549.
- Y. Zhang, C. Wang, X. Wang, W. Zeng, and W. Liu, “FairMOT: On the Fairness of Detection and Re-identification in Multiple Object Tracking,” International Journal of Computer Vision, vol. 129, no. 11, pp. 3069–3087, Nov. 2021. [Online]. Available: https://doi.org/10.1007/s11263-021-01513-4
- T. Meinhardt, A. Kirillov, L. Leal-Taixe, and C. Feichtenhofer, “TrackFormer: Multi-Object Tracking with Transformers,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA: IEEE, June 2022, pp. 8834–8844. [Online]. Available: https://ieeexplore.ieee.org/document/9879668/
- F. Zeng, B. Dong, Y. Zhang, T. Wang, X. Zhang, and Y. Wei, “MOTR: End-to-End Multiple-Object Tracking with Transformer,” July 2022, arXiv:2105.03247 [cs]. [Online]. Available: http://arxiv.org/abs/2105.03247
- N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-End Object Detection with Transformers,” May 2020, arXiv:2005.12872 [cs]. [Online]. Available: http://arxiv.org/abs/2005.12872
- M. Halstead, C. McCool, S. Denman, T. Perez, and C. Fookes, “Fruit Quantity and Ripeness Estimation Using a Robotic Vision System,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 2995–3002, Oct. 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8392450/
- R. Kirk, M. Mangan, and G. Cielniak, “Robust Counting of Soft Fruit Through Occlusions with Re-identification,” in Computer Vision Systems, ser. Lecture Notes in Computer Science, M. Vincze, T. Patten, H. I. Christensen, L. Nalpantidis, and M. Liu, Eds. Cham: Springer International Publishing, 2021, pp. 211–222.
- M. Halstead, A. Ahmadi, C. Smitt, O. Schmittmann, and C. McCool, “Crop Agnostic Monitoring Driven by Deep Learning,” Frontiers in Plant Science, vol. 12, 2021. [Online]. Available: https://www.frontiersin.org/article/10.3389/fpls.2021.786702
- J. Villacrés, M. Viscaino, J. Delpiano, S. Vougioukas, and F. Auat Cheein, “Apple orchard production estimation using deep learning strategies: A comparison of tracking-by-detection algorithms,” Computers and Electronics in Agriculture, vol. 204, p. 107513, Jan. 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0168169922008213
- D. Rapado-Rincón, E. J. van Henten, and G. Kootstra, “MinkSORT: A 3D deep feature extractor using sparse convolutions to improve 3D multi-object tracking in greenhouse tomato plants,” July 2023, arXiv:2307.05219 [cs]. [Online]. Available: http://arxiv.org/abs/2307.05219
- R. Hemmerling, O. Kniemeyer, D. Lanwert, W. Kurth, and G. Buck-Sorlin, “The rule-based language XL and the modelling environment GroIMP illustrated with simulated tree competition,” Functional Plant Biology, vol. 35, no. 10, pp. 739–750, Nov. 2008, publisher: CSIRO PUBLISHING. [Online]. Available: https://www.publish.csiro.au/fp/FP08052
- Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A Modern Library for 3D Data Processing,” Jan. 2018, arXiv:1801.09847 [cs]. [Online]. Available: http://arxiv.org/abs/1801.09847
- M. Afonso, H. Fonteijn, F. S. Fiorentin, D. Lensink, M. Mooij, N. Faber, G. Polder, and R. Wehrens, “Tomato Fruit Detection and Counting in Greenhouses Using Deep Learning,” Frontiers in Plant Science, vol. 11, 2020. [Online]. Available: https://www.frontiersin.org/article/10.3389/fpls.2020.571299
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.