Papers
Topics
Authors
Recent
Search
2000 character limit reached

Calderón Strategies for the Convolution Quadrature Time Domain Electric Field Integral Equation

Published 27 Nov 2023 in math.NA and cs.NA | (2311.15592v1)

Abstract: In this work, we introduce new integral formulations based on the convolution quadrature method for the time-domain modeling of perfectly electrically conducting scatterers that overcome some of the most critical issues of the standard schemes based on the electric field integral equation (EFIE). The standard time-domain EFIE-based approaches typically yield matrices that become increasingly ill-conditioned as the time-step or the mesh discretization density increase and suffer from the well-known DC instability. This work presents solutions to these issues that are based both on new Calder\'on strategies and quasi-Helmholtz projectors regularizations. In addition, to ensure an efficient computation of the marching-on-in-time, the proposed schemes leverage properties of the Z-transform -- involved in the convolution quadrature discretization scheme -- when computing the stabilized operators. The two resulting formulations compare favorably with standard, well-established schemes. The properties and practical relevance of these new formulations will be showcased through relevant numerical examples that include canonical geometries and more complex structures.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.