Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A deep learning approach for marine snow synthesis and removal (2311.15584v1)

Published 27 Nov 2023 in eess.IV, cs.CV, and cs.LG

Abstract: Marine snow, the floating particles in underwater images, severely degrades the visibility and performance of human and machine vision systems. This paper proposes a novel method to reduce the marine snow interference using deep learning techniques. We first synthesize realistic marine snow samples by training a Generative Adversarial Network (GAN) model and combine them with natural underwater images to create a paired dataset. We then train a U-Net model to perform marine snow removal as an image to image translation task. Our experiments show that the U-Net model can effectively remove both synthetic and natural marine snow with high accuracy, outperforming state-of-the-art methods such as the Median filter and its adaptive variant. We also demonstrate the robustness of our method by testing it on the MSRB dataset, which contains synthetic artifacts that our model has not seen during training. Our method is a practical and efficient solution for enhancing underwater images affected by marine snow.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.