Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Automatic Time Signature Determination for New Scores Using Lyrics for Latent Rhythmic Structure (2311.15480v2)

Published 27 Nov 2023 in cs.LG, cs.AI, cs.CL, cs.MM, and cs.SD

Abstract: There has recently been a sharp increase in interest in Artificial Intelligence-Generated Content (AIGC). Despite this, musical components such as time signatures have not been studied sufficiently to form an algorithmic determination approach for new compositions, especially lyrical songs. This is likely because of the neglect of musical details, which is critical for constructing a robust framework. Specifically, time signatures establish the fundamental rhythmic structure for almost all aspects of a song, including the phrases and notes. In this paper, we propose a novel approach that only uses lyrics as input to automatically generate a fitting time signature for lyrical songs and uncover the latent rhythmic structure utilizing explainable machine learning models. In particular, we devise multiple methods that are associated with discovering lyrical patterns and creating new features that simultaneously contain lyrical, rhythmic, and statistical information. In this approach, the best of our experimental results reveal a 97.6% F1 score and a 0.996 Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) score. In conclusion, our research directly generates time signatures from lyrics automatically for new scores utilizing machine learning, which is an innovative idea that approaches an understudied component of musicology and therefore contributes significantly to the future of AI music generation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube