Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Local Convergence of Approximate Newton Method for Two Layer Nonlinear Regression (2311.15390v1)

Published 26 Nov 2023 in cs.LG

Abstract: There have been significant advancements made by LLMs in various aspects of our daily lives. LLMs serve as a transformative force in natural language processing, finding applications in text generation, translation, sentiment analysis, and question-answering. The accomplishments of LLMs have led to a substantial increase in research efforts in this domain. One specific two-layer regression problem has been well-studied in prior works, where the first layer is activated by a ReLU unit, and the second layer is activated by a softmax unit. While previous works provide a solid analysis of building a two-layer regression, there is still a gap in the analysis of constructing regression problems with more than two layers. In this paper, we take a crucial step toward addressing this problem: we provide an analysis of a two-layer regression problem. In contrast to previous works, our first layer is activated by a softmax unit. This sets the stage for future analyses of creating more activation functions based on the softmax function. Rearranging the softmax function leads to significantly different analyses. Our main results involve analyzing the convergence properties of an approximate Newton method used to minimize the regularized training loss. We prove that the loss function for the Hessian matrix is positive definite and Lipschitz continuous under certain assumptions. This enables us to establish local convergence guarantees for the proposed training algorithm. Specifically, with an appropriate initialization and after $O(\log(1/\epsilon))$ iterations, our algorithm can find an $\epsilon$-approximate minimizer of the training loss with high probability. Each iteration requires approximately $O(\mathrm{nnz}(C) + d\omega)$ time, where $d$ is the model size, $C$ is the input matrix, and $\omega < 2.374$ is the matrix multiplication exponent.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.