Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How much data do I need? A case study on medical data (2311.15331v1)

Published 26 Nov 2023 in cs.LG and cs.CV

Abstract: The collection of data to train a Deep Learning network is costly in terms of effort and resources. In many cases, especially in a medical context, it may have detrimental impacts. Such as requiring invasive medical procedures or processes which could in themselves cause medical harm. However, Deep Learning is seen as a data hungry method. Here, we look at two commonly held adages i) more data gives better results and ii) transfer learning will aid you when you don't have enough data. These are widely assumed to be true and used as evidence for choosing how to solve a problem when Deep Learning is involved. We evaluate six medical datasets and six general datasets. Training a ResNet18 network on varying subsets of these datasets to evaluate `more data gives better results'. We take eleven of these datasets as the sources for Transfer Learning on subsets of the twelfth dataset -- Chest -- in order to determine whether Transfer Learning is universally beneficial. We go further to see whether multi-stage Transfer Learning provides a consistent benefit. Our analysis shows that the real situation is more complex than these simple adages -- more data could lead to a case of diminishing returns and an incorrect choice of dataset for transfer learning can lead to worse performance, with datasets which we would consider highly similar to the Chest dataset giving worse results than datasets which are more dissimilar. Multi-stage transfer learning likewise reveals complex relationships between datasets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.