Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Optimizing Coarse Propagators in Parareal Algorithms (2311.15320v2)

Published 26 Nov 2023 in math.NA and cs.NA

Abstract: The parareal algorithm represents an important class of parallel-in-time algorithms for solving evolution equations and has been widely applied in practice. To achieve effective speedup, the choice of the coarse propagator in the algorithm is vital. In this work, we investigate the use of {optimized} coarse propagators. Building upon the error estimation framework, we present a systematic procedure for constructing coarse propagators that enjoy desirable stability and consistent order. Additionally, we provide preliminary mathematical guarantees for the resulting parareal algorithm. Numerical experiments on a variety of settings, e.g., linear diffusion model, Allen-Cahn model, and viscous Burgers model, show that the optimizing procedure can significantly improve parallel efficiency when compared with the more ad hoc choice of some conventional and widely used coarse propagators.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (4)
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.