Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fine-Grained Unsupervised Cross-Modality Domain Adaptation for Vestibular Schwannoma Segmentation (2311.15090v1)

Published 25 Nov 2023 in eess.IV, cs.CV, and cs.LG

Abstract: The domain adaptation approach has gained significant acceptance in transferring styles across various vendors and centers, along with filling the gaps in modalities. However, multi-center application faces the challenge of the difficulty of domain adaptation due to their intra-domain differences. We focus on introducing a fine-grained unsupervised framework for domain adaptation to facilitate cross-modality segmentation of vestibular schwannoma (VS) and cochlea. We propose to use a vector to control the generator to synthesize a fake image with given features. And then, we can apply various augmentations to the dataset by searching the feature dictionary. The diversity augmentation can increase the performance and robustness of the segmentation model. On the CrossMoDA validation phase Leaderboard, our method received a mean Dice score of 0.765 and 0.836 on VS and cochlea, respectively.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube