Papers
Topics
Authors
Recent
Search
2000 character limit reached

Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning

Published 25 Nov 2023 in cs.LG and cs.AI | (2311.15056v2)

Abstract: Background: Discovering potential drug-drug interactions (DDIs) is a long-standing challenge in clinical treatments and drug developments. Recently, deep learning techniques have been developed for DDI prediction. However, they generally require a huge number of samples, while known DDIs are rare. Methods: In this work, we present KnowDDI, a graph neural network-based method that addresses the above challenge. KnowDDI enhances drug representations by adaptively leveraging rich neighborhood information from large biomedical knowledge graphs. Then, it learns a knowledge subgraph for each drug-pair to interpret the predicted DDI, where each of the edges is associated with a connection strength indicating the importance of a known DDI or resembling strength between a drug-pair whose connection is unknown. Thus, the lack of DDIs is implicitly compensated by the enriched drug representations and propagated drug similarities. Results: We evaluate KnowDDI on two benchmark DDI datasets. Results show that KnowDDI obtains the state-of-the-art prediction performance with better interpretability. We also find that KnowDDI suffers less than existing works given a sparser knowledge graph. This indicates that the propagated drug similarities play a more important role in compensating for the lack of DDIs when the drug representations are less enriched. Conclusions: KnowDDI nicely combines the efficiency of deep learning techniques and the rich prior knowledge in biomedical knowledge graphs. As an original open-source tool, KnowDDI can help detect possible interactions in a broad range of relevant interaction prediction tasks, such as protein-protein interactions, drug-target interactions and disease-gene interactions, eventually promoting the development of biomedicine and healthcare.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. Drug-drug interactions among elderly patients hospitalized for drug toxicity. JAMA 289 (13), 1652–1658 (2003) . (2) Bangalore, S., Kamalakkannan, G., Parkar, S. & Messerli, F. H. Fixed-dose combinations improve medication compliance: A meta-analysis. The American Journal of Medicine 120 (8), 713–719 (2007) . (3) Scavone, C. et al. Current pharmacological treatments for COVID-19: What’s next? British Journal of Pharmacology 177 (21), 4813–4824 (2020) . (4) Chakraborty, C., Sharma, A. R., Bhattacharya, M., Agoramoorthy, G. & Lee, S.-S. The drug repurposing for COVID-19 clinical trials provide very effective therapeutic combinations: Lessons learned from major clinical studies. Frontiers in Pharmacology 12 (2021) . (5) Akinbolade, S. et al. Combination therapies for COVID-19: An overview of the clinical trials landscape. British Journal of Clinical Pharmacology 88 (4), 1590–1597 (2022) . (6) Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bangalore, S., Kamalakkannan, G., Parkar, S. & Messerli, F. H. Fixed-dose combinations improve medication compliance: A meta-analysis. The American Journal of Medicine 120 (8), 713–719 (2007) . (3) Scavone, C. et al. Current pharmacological treatments for COVID-19: What’s next? British Journal of Pharmacology 177 (21), 4813–4824 (2020) . (4) Chakraborty, C., Sharma, A. R., Bhattacharya, M., Agoramoorthy, G. & Lee, S.-S. The drug repurposing for COVID-19 clinical trials provide very effective therapeutic combinations: Lessons learned from major clinical studies. Frontiers in Pharmacology 12 (2021) . (5) Akinbolade, S. et al. Combination therapies for COVID-19: An overview of the clinical trials landscape. British Journal of Clinical Pharmacology 88 (4), 1590–1597 (2022) . (6) Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Scavone, C. et al. Current pharmacological treatments for COVID-19: What’s next? British Journal of Pharmacology 177 (21), 4813–4824 (2020) . (4) Chakraborty, C., Sharma, A. R., Bhattacharya, M., Agoramoorthy, G. & Lee, S.-S. The drug repurposing for COVID-19 clinical trials provide very effective therapeutic combinations: Lessons learned from major clinical studies. Frontiers in Pharmacology 12 (2021) . (5) Akinbolade, S. et al. Combination therapies for COVID-19: An overview of the clinical trials landscape. British Journal of Clinical Pharmacology 88 (4), 1590–1597 (2022) . (6) Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chakraborty, C., Sharma, A. R., Bhattacharya, M., Agoramoorthy, G. & Lee, S.-S. The drug repurposing for COVID-19 clinical trials provide very effective therapeutic combinations: Lessons learned from major clinical studies. Frontiers in Pharmacology 12 (2021) . (5) Akinbolade, S. et al. Combination therapies for COVID-19: An overview of the clinical trials landscape. British Journal of Clinical Pharmacology 88 (4), 1590–1597 (2022) . (6) Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Akinbolade, S. et al. Combination therapies for COVID-19: An overview of the clinical trials landscape. British Journal of Clinical Pharmacology 88 (4), 1590–1597 (2022) . (6) Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  2. Fixed-dose combinations improve medication compliance: A meta-analysis. The American Journal of Medicine 120 (8), 713–719 (2007) . (3) Scavone, C. et al. Current pharmacological treatments for COVID-19: What’s next? British Journal of Pharmacology 177 (21), 4813–4824 (2020) . (4) Chakraborty, C., Sharma, A. R., Bhattacharya, M., Agoramoorthy, G. & Lee, S.-S. The drug repurposing for COVID-19 clinical trials provide very effective therapeutic combinations: Lessons learned from major clinical studies. Frontiers in Pharmacology 12 (2021) . (5) Akinbolade, S. et al. Combination therapies for COVID-19: An overview of the clinical trials landscape. British Journal of Clinical Pharmacology 88 (4), 1590–1597 (2022) . (6) Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Scavone, C. et al. Current pharmacological treatments for COVID-19: What’s next? British Journal of Pharmacology 177 (21), 4813–4824 (2020) . (4) Chakraborty, C., Sharma, A. R., Bhattacharya, M., Agoramoorthy, G. & Lee, S.-S. The drug repurposing for COVID-19 clinical trials provide very effective therapeutic combinations: Lessons learned from major clinical studies. Frontiers in Pharmacology 12 (2021) . (5) Akinbolade, S. et al. Combination therapies for COVID-19: An overview of the clinical trials landscape. British Journal of Clinical Pharmacology 88 (4), 1590–1597 (2022) . (6) Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chakraborty, C., Sharma, A. R., Bhattacharya, M., Agoramoorthy, G. & Lee, S.-S. The drug repurposing for COVID-19 clinical trials provide very effective therapeutic combinations: Lessons learned from major clinical studies. Frontiers in Pharmacology 12 (2021) . (5) Akinbolade, S. et al. Combination therapies for COVID-19: An overview of the clinical trials landscape. British Journal of Clinical Pharmacology 88 (4), 1590–1597 (2022) . (6) Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Akinbolade, S. et al. Combination therapies for COVID-19: An overview of the clinical trials landscape. British Journal of Clinical Pharmacology 88 (4), 1590–1597 (2022) . (6) Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  3. Scavone, C. et al. Current pharmacological treatments for COVID-19: What’s next? British Journal of Pharmacology 177 (21), 4813–4824 (2020) . (4) Chakraborty, C., Sharma, A. R., Bhattacharya, M., Agoramoorthy, G. & Lee, S.-S. The drug repurposing for COVID-19 clinical trials provide very effective therapeutic combinations: Lessons learned from major clinical studies. Frontiers in Pharmacology 12 (2021) . (5) Akinbolade, S. et al. Combination therapies for COVID-19: An overview of the clinical trials landscape. British Journal of Clinical Pharmacology 88 (4), 1590–1597 (2022) . (6) Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chakraborty, C., Sharma, A. R., Bhattacharya, M., Agoramoorthy, G. & Lee, S.-S. The drug repurposing for COVID-19 clinical trials provide very effective therapeutic combinations: Lessons learned from major clinical studies. Frontiers in Pharmacology 12 (2021) . (5) Akinbolade, S. et al. Combination therapies for COVID-19: An overview of the clinical trials landscape. British Journal of Clinical Pharmacology 88 (4), 1590–1597 (2022) . (6) Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Akinbolade, S. et al. Combination therapies for COVID-19: An overview of the clinical trials landscape. British Journal of Clinical Pharmacology 88 (4), 1590–1597 (2022) . (6) Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  4. The drug repurposing for COVID-19 clinical trials provide very effective therapeutic combinations: Lessons learned from major clinical studies. Frontiers in Pharmacology 12 (2021) . (5) Akinbolade, S. et al. Combination therapies for COVID-19: An overview of the clinical trials landscape. British Journal of Clinical Pharmacology 88 (4), 1590–1597 (2022) . (6) Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Akinbolade, S. et al. Combination therapies for COVID-19: An overview of the clinical trials landscape. British Journal of Clinical Pharmacology 88 (4), 1590–1597 (2022) . (6) Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  5. Akinbolade, S. et al. Combination therapies for COVID-19: An overview of the clinical trials landscape. British Journal of Clinical Pharmacology 88 (4), 1590–1597 (2022) . (6) Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Percha, B. & Altman, R. B. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  6. Informatics confronts drug–drug interactions. Trends in Pharmacological Sciences 34 (3), 178–184 (2013) . (7) Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  7. Letinier, L. et al. Risk of drug-drug interactions in out-hospital drug dispensings in france: Results from the drug-drug interaction prevalence study. Frontiers in Pharmacology 10, 265 (2019) . (8) Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  8. Jiang, H. et al. Adverse drug reactions and correlations with drug–drug interactions: A retrospective study of reports from 2011 to 2020. Frontiers in Pharmacology 13 (2022) . (9) Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  9. Marijon, E. et al. Causes of death and influencing factors in patients with atrial fibrillation: A competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation 128 (20), 2192–2201 (2013) . (10) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  10. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34 (13), i457–i466 (2018) . (11) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  11. SkipGNN: Predicting molecular interactions with skip-graph networks. Scientific Reports 10 (1), 1–16 (2020) . (12) Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Derry, S., Kong Loke, Y. & Aronson, J. K. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  12. Incomplete evidence: The inadequacy of databases in tracing published adverse drug reactions in clinical trials. BMC Medical Research Methodology 1 (1), 1–6 (2001) . (13) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  13. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1), D1074–D1082 (2018) . (14) Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  14. Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds) DeepWalk: Online learning of social representations. (eds Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710 (2014). (15) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  15. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 38 (8), 2315–2322 (2022) . (16) Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  16. Bonner, S. et al. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. arXiv preprint arXiv:2102.10062 (2021) . (17) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  17. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology 11 (7), e1004259 (2015) . (18) Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  18. Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes (2015). URL https://het.io/. Hetionet Knowledge Graph. (19) Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  19. Zheng, S. et al. PharmKG: A dedicated knowledge graph benchmark for bomedical data mining. Briefings in Bioinformatics 22 (4), bbaa344 (2021) . (20) Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  20. Building a knowledge graph to enable precision medicine. Scientific Data 10 (1), 67 (2023) . (21) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  21. Bessiere, C. (ed.) KGNN: Knowledge graph neural network for drug-drug interaction prediction. (ed.Bessiere, C.) International Joint Conference on Artificial Intelligence, Vol. 380, 2739–2745 (2020). (22) Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  22. III, H. D. & Singh, A. (eds) Inductive relation prediction by subgraph reasoning. (eds III, H. D. & Singh, A.) International Conference on Machine Learning, 9448–9457 (2020). (23) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  23. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 37 (18), 2988–2995 (2021) . (24) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  24. LaGAT: link-aware graph attention network for drug–drug interaction prediction. Bioinformatics 38 (24), 5406–5412 (2022) . (25) Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hamilton, W., Ying, Z. & Leskovec, J. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  25. Guyon, I. et al. (eds) Inductive representation learning on large graphs. (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, 1024–1034 (2017). (26) Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Vashishth, S., Sanyal, S., Nitin, V. & Talukdar, P. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  26. Composition-based multi-relational graph convolutional networks (2020). Paper presented at the 8th International Conference on Learning Representations. (27) Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Sadeghian, A., Armandpour, M., Ding, P. & Wang, D. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  27. Wallach, H. M. et al. (eds) DRUM: End-to-end differentiable rule mining on knowledge graphs. (eds Wallach, H. M. et al.) Advances in Neural Information Processing Systems, 15347–15357 (2019). (28) Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  28. Adam: A method for stochastic optimization (2015). Paper presented at the 3rd International Conference on Learning Representations. (29) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  29. Data-driven prediction of drug effects and interactions. Science Translational Medicine 4 (125), 125ra31 (2012) . (30) Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  30. Hu, W. et al. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds) Open graph benchmark: Datasets for machine learning on graphs. (eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) Advances in Neural Information Processing Systems, Vol. 33, 22118–22133 (2020). (31) Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  31. OpenBioLink: A benchmarking framework for large-scale biomedical link prediction. Bioinformatics 36 (13), 4097–4098 (2020) . (32) Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  32. Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018 (2018). URL https://www.drugbank.ca/. DrugBank Database. (33) Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tatonetti, N. P., Patrick, P. Y., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  33. Data-driven prediction of drug effects and interactions (2012). URL https://tatonettilab.org/resources/nsides/. TWOSIDES Database. (34) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  34. Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q. (eds) Translating embeddings for modeling multi-relational data. (eds Burges, C. J. C., Bottou, L., Ghahramani, Z. & Weinberger, K. Q.) Advances in Neural Information Processing Systems, 2787–2795 (2013). (35) Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  35. Karim, M. R. et al. Shi, X. M., Buck, M., Ma, J. & Veltri, P. (eds) Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. (eds Shi, X. M., Buck, M., Ma, J. & Veltri, P.) ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 113–123 (2019). (36) Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  36. Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019). URL https://github.com/rezacsedu/Drug-Drug-Interaction-Prediction. Codes of KG-DDI. (37) Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yao, J., Sun, W., Jian, Z., Wu, Q. & Wang, X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  37. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction (2022). URL https://github.com/galaxysunwen/MSTE-master. Codes of MSTE. (38) Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  38. DeepWalk: Online learning of social representations (2014). URL https://github.com/phanein/deepwalk. Codes of DeepWalk. (39) Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  39. Krishnapuram, B. et al. (eds) node2vec: Scalable feature learning for networks. (eds Krishnapuram, B. et al.) ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864 (2016). (40) Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  40. node2vec: Scalable feature learning for networks (2016). URL https://github.com/shenweichen/GraphEmbedding. Codes of node2vec. (41) Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  41. Tang, J. et al. Gangemi, A., Leonardi, S. & Panconesi, A. (eds) LINE: Large-scale information network embedding. (eds Gangemi, A., Leonardi, S. & Panconesi, A.) International Conference on World Wide Web, 1067–1077 (2015). (42) Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  42. Tang, J. et al. LINE: Large-scale information network embedding (2015). URL https://github.com/tangjianpku/LINE. Codes of LINE. (43) Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  43. Semi-supervised classification with graph convolutional networks (2017). Paper presented at the 5th International Conference on Learning Representations. (44) Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  44. Veličković, P. et al. Graph attention networks (2018). Paper presented at the 6th International Conference on Learning Representations. (45) Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  45. Veličković, P. et al. Graph attention networks (2018). URL https://github.com/PetarV-/GAT. Codes of GAT. (46) Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  46. Modeling polypharmacy side effects with graph convolutional networks (2018). URL https://github.com/mims-harvard/decagon. Codes of Decagon. (47) Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  47. SkipGNN: Predicting molecular interactions with skip-graph networks (2020). URL https://github.com/kexinhuang12345/SkipGNN. Codes of SkipGNN. (48) Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Teru, K., Denis, E. & Hamilton, W. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  48. Inductive relation prediction by subgraph reasoning (2020). URL https://github.com/kkteru/grail. Codes of GraIL. (49) Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Lin, X., Quan, Z., Wang, Z.-J., Ma, T. & Zeng, X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  49. KGNN: Knowledge graph neural network for drug-drug interaction prediction. (2020). URL https://github.com/xzenglab/KGNN. Codes of KGNN. (50) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  50. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings in Bioinformatics 23 (3) (2022) . (51) Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Su, X., Hu, L., You, Z., Hu, P. & Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  51. Attention-based knowledge graph representation learning for predicting drug-drug interactions (2022). URL https://github.com/Blair1213/DDKG. Codes of DDKG. (52) Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  52. Yu, Y. et al. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization (2021). URL https://github.com/yueyu1030/SumGNN. Codes of SumGNN. (53) Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Hong, Y., Luo, P., Jin, S. & Liu, X. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  53. LaGAT: link-aware graph attention network for drug–drug interaction prediction (2022). URL https://github.com/Azra3lzz/LaGAT. Codes of LaGAT. (54) Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  54. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11) (2008) . (55) Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  55. Schlichtkrull, M. et al. Gangemi, A. et al. (eds) Modeling relational data with graph convolutional networks. (eds Gangemi, A. et al.) The Semantic Web: 15th International Conference, 593–607 (2018). (56) Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Zhang, M. & Chen, Y. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  56. Bengio, S. et al. (eds) Link prediction based on graph neural networks. (eds Bengio, S. et al.) Advances in Neural Information Processing Systems, 5171–5181 (2018). (57) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  57. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI/tree/main/data. Processed data used in KnowDDI. (58) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  58. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2024). URL https://github.com/LARS-research/KnowDDI. Codes of KnowDDI hosted by GitHub. (59) Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo. Wang, Y., Yang, Z. & Yao, Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
  59. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning (2023). URL https://doi.org/10.5281/zenodo.10285646. Code version submitted for review available at Zenodo.
Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.