Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Precoding and Combining for mmWave Full-Duplex Joint Radar and Communication Systems under Self-Interference (2311.14942v2)

Published 25 Nov 2023 in eess.SP, cs.IT, and math.IT

Abstract: In the context of integrated sensing and communication (ISAC), a full-duplex (FD) transceiver can operate as a monostatic radar while maintaining communication capabilities. This paper investigates the design of precoders and combiners for a joint radar and communication (JRC) system at mmWave frequencies. The primary goal of the design is to guarantee certain performance in terms of some sensing and communication metrics while minimizing the self-interference (SI) caused by FD operation and taking into account the hardware limitations coming from a hybrid MIMO architecture. Specifically, we introduce a generalized eigenvalue-based precoder design that considers the downlink user rate, the radar gain, and the SI suppression. Since the hybrid analog/digital architecture degrades the SI mitigation capability of the precoder, we further enhance SI suppression with the analog combiner. Our numerical results demonstrate that the proposed architecture achieves the required radar gain and SI mitigation while incurring a small loss in downlink spectral efficiency. Additionally, the numerical experiments also show that the use of orthogonal frequency division multiplexing (OFDM) radar with the proposed beamforming architecture results in highly accurate range and velocity estimates for the detected targets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, 2022.
  2. C. B. Barneto, S. D. Liyanaarachchi, M. Heino, T. Riihonen, and M. Valkama, “Full duplex radio/radar technology: The enabler for advanced joint communication and sensing,” IEEE Wireless Commun., vol. 28, no. 1, pp. 82–88, 2021.
  3. S. D. Liyanaarachchi, C. B. Barneto, T. Riihonen, M. Heino, and M. Valkama, “Joint multi-user communication and MIMO radar through full-duplex hybrid beamforming,” in Proc. 1st IEEE Int. Online Symp. Joint Commun. Sensing (JCS), 2021, pp. 1–5.
  4. C. B. Barneto, T. Riihonen, S. D. Liyanaarachchi, M. Heino, N. González-Prelcic, and M. Valkama, “Beamformer design and optimization for joint communication and full-duplex sensing at mm-Waves,” IEEE Trans. Commun., vol. 70, no. 12, pp. 8298–8312, 2022.
  5. M. A. Islam, G. C. Alexandropoulos, and B. Smida, “Integrated sensing and communication with millimeter wave full duplex hybrid beamforming,” in Proc. IEEE Int. Conf. Commun. (ICC), 2022, pp. 4673–4678.
  6. R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 436–453, 2016.
  7. R. López-Valcarce and N. González-Prelcic, “Analog beamforming for full-duplex millimeter wave communication,” in Proc. 16th Int. Symp. Wireless Commun. Syst. (ISWCS), 2019, pp. 687–691.
  8. R. López-Valcarce and M. Martínez-Cotelo, “Full-duplex mmWave communication with hybrid precoding and combining,” in Proc. 28th Eur. Signal Process. Conf. (EUSIPCO), 2021, pp. 1752–1756.
  9. I. P. Roberts, J. G. Andrews, and S. Vishwanath, “Hybrid beamforming for millimeter wave full-duplex under limited receive dynamic range,” IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 7758–7772, 2021.
  10. I. P. Roberts, J. G. Andrews, H. B. Jain, and S. Vishwanath, “Millimeter-wave full duplex radios: New challenges and techniques,” IEEE Wireless Commun., vol. 28, no. 1, pp. 36–43, 2021.
  11. B. Ghojogh, F. Karray, and M. Crowley, “Eigenvalue and generalized eigenvalue problems: Tutorial,” arXiv preprint arXiv:1903.11240, 2019.
  12. M. Sadek, A. Tarighat, and A. H. Sayed, “A leakage-based precoding scheme for downlink multi-user MIMO channels,” IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1711–1721, 2007.
  13. R. Bhagavatula, R. W. Heath, and B. Rao, “Limited feedback with joint CSI quantization for multicell cooperative generalized eigenvector beamforming,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2010, pp. 2838–2841.
  14. M. Bayraktar and G. M. Guvensen, “An efficient interference-aware constrained massive MIMO beamforming for mm-Wave JSDM,” IEEE Access, vol. 9, pp. 87 877–87 897, 2021.
  15. A. M. Elbir, K. V. Mishra, S. A. Vorobyov, and R. W. Heath, “Twenty-five years of advances in beamforming: From convex and nonconvex optimization to learning techniques,” IEEE Signal Process. Mag., vol. 40, no. 4, pp. 118–131, 2023.
  16. C. Rusu, R. Mèndez-Rial, N. González-Prelcic, and R. W. Heath, “Low complexity hybrid precoding strategies for millimeter wave communication systems,” IEEE Trans. Wireless Commun., vol. 15, no. 12, pp. 8380–8393, 2016.
  17. X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, “Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 485–500, 2016.
  18. J. P. González-Coma, J. Rodríguez-Fernández, N. González-Prelcic, L. Castedo, and R. W. Heath, “Channel estimation and hybrid precoding for frequency selective multiuser mmWave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 2, pp. 353–367, 2018.
  19. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” 2014.
Citations (7)

Summary

We haven't generated a summary for this paper yet.