Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Understanding the Role of Textual Prompts in LLM for Time Series Forecasting: an Adapter View (2311.14782v2)

Published 24 Nov 2023 in cs.LG

Abstract: In the burgeoning domain of LLMs, there is a growing interest in applying LLM to time series forecasting, with multiple studies focused on leveraging textual prompts to further enhance the predictive prowess. This study aims to understand how and why the integration of textual prompts into LLM can effectively improve the prediction accuracy of time series, which is not obvious at the glance, given the significant domain gap between texts and time series. Our extensive examination leads us to believe that (a) adding text prompts is roughly equivalent to introducing additional adapters, and (b) It is the introduction of learnable parameters rather than textual information that aligns the LLM with the time series forecasting task, ultimately enhancing prediction accuracy. Inspired by this discovery, we developed four adapters that explicitly address the gap between LLM and time series, and further improve the prediction accuracy. Overall,our work highlights how textual prompts enhance LLM accuracy in time series forecasting and suggests new avenues for continually improving LLM-based time series analysis.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.