Multi-Class Anomaly Detection based on Regularized Discriminative Coupled hypersphere-based Feature Adaptation (2311.14506v2)
Abstract: In anomaly detection, identification of anomalies across diverse product categories is a complex task. This paper introduces a new model by including class discriminative properties obtained by a modified Regularized Discriminative Variational Auto-Encoder (RD-VAE) in the feature extraction process of Coupled-hypersphere-based Feature Adaptation (CFA). By doing so, the proposed Regularized Discriminative Coupled-hypersphere-based Feature Adaptation (RD-CFA), forms a solution for multi-class anomaly detection. By using the discriminative power of RD-VAE to capture intricate class distributions, combined with CFA's robust anomaly detection capability, the proposed method excels in discerning anomalies across various classes. Extensive evaluations on multi-class anomaly detection and localization using the MVTec AD and BeanTech AD datasets showcase the effectiveness of RD-CFA compared to eight leading contemporary methods.
- Zavrtanik, V., Kristan, M., Skočaj, D.: Draem-a discriminatively trained reconstruction embedding for surface anomaly detection. IEEE International Conference on Computer Vision, 8330–8339 (2021) Defard et al. [2021] Defard, T., Setkov, A., Loesch, A., Audigier, R.: Padim: a patch distribution modeling framework for anomaly detection and localization. Pattern Recognition. ICPR International Workshops and Challenges: Virtual Event, 475–489 (2021) Gudovskiy et al. [2022] Gudovskiy, D., Ishizaka, S., Kozuka, K.: Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows. IEEE Winter Conference on Applications of Computer Vision, 98–107 (2022) Deng and Li [2022] Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embedding. IEEE Conference on Computer Vision and Pattern Recognition, 9737–9746 (2022) You et al. [2022] You, Z., Cui, L., Shen, Y., Yang, K., Lu, X., Zheng, Y., Le, X.: A unified model for multi-class anomaly detection. Advances in Neural Information Processing Systems 35, 4571–4584 (2022) Kirchheim et al. [2022] Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Defard, T., Setkov, A., Loesch, A., Audigier, R.: Padim: a patch distribution modeling framework for anomaly detection and localization. Pattern Recognition. ICPR International Workshops and Challenges: Virtual Event, 475–489 (2021) Gudovskiy et al. [2022] Gudovskiy, D., Ishizaka, S., Kozuka, K.: Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows. IEEE Winter Conference on Applications of Computer Vision, 98–107 (2022) Deng and Li [2022] Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embedding. IEEE Conference on Computer Vision and Pattern Recognition, 9737–9746 (2022) You et al. [2022] You, Z., Cui, L., Shen, Y., Yang, K., Lu, X., Zheng, Y., Le, X.: A unified model for multi-class anomaly detection. Advances in Neural Information Processing Systems 35, 4571–4584 (2022) Kirchheim et al. [2022] Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Gudovskiy, D., Ishizaka, S., Kozuka, K.: Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows. IEEE Winter Conference on Applications of Computer Vision, 98–107 (2022) Deng and Li [2022] Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embedding. IEEE Conference on Computer Vision and Pattern Recognition, 9737–9746 (2022) You et al. [2022] You, Z., Cui, L., Shen, Y., Yang, K., Lu, X., Zheng, Y., Le, X.: A unified model for multi-class anomaly detection. Advances in Neural Information Processing Systems 35, 4571–4584 (2022) Kirchheim et al. [2022] Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embedding. IEEE Conference on Computer Vision and Pattern Recognition, 9737–9746 (2022) You et al. [2022] You, Z., Cui, L., Shen, Y., Yang, K., Lu, X., Zheng, Y., Le, X.: A unified model for multi-class anomaly detection. Advances in Neural Information Processing Systems 35, 4571–4584 (2022) Kirchheim et al. [2022] Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) You, Z., Cui, L., Shen, Y., Yang, K., Lu, X., Zheng, Y., Le, X.: A unified model for multi-class anomaly detection. Advances in Neural Information Processing Systems 35, 4571–4584 (2022) Kirchheim et al. [2022] Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016)
- Defard, T., Setkov, A., Loesch, A., Audigier, R.: Padim: a patch distribution modeling framework for anomaly detection and localization. Pattern Recognition. ICPR International Workshops and Challenges: Virtual Event, 475–489 (2021) Gudovskiy et al. [2022] Gudovskiy, D., Ishizaka, S., Kozuka, K.: Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows. IEEE Winter Conference on Applications of Computer Vision, 98–107 (2022) Deng and Li [2022] Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embedding. IEEE Conference on Computer Vision and Pattern Recognition, 9737–9746 (2022) You et al. [2022] You, Z., Cui, L., Shen, Y., Yang, K., Lu, X., Zheng, Y., Le, X.: A unified model for multi-class anomaly detection. Advances in Neural Information Processing Systems 35, 4571–4584 (2022) Kirchheim et al. [2022] Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Gudovskiy, D., Ishizaka, S., Kozuka, K.: Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows. IEEE Winter Conference on Applications of Computer Vision, 98–107 (2022) Deng and Li [2022] Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embedding. IEEE Conference on Computer Vision and Pattern Recognition, 9737–9746 (2022) You et al. [2022] You, Z., Cui, L., Shen, Y., Yang, K., Lu, X., Zheng, Y., Le, X.: A unified model for multi-class anomaly detection. Advances in Neural Information Processing Systems 35, 4571–4584 (2022) Kirchheim et al. [2022] Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embedding. IEEE Conference on Computer Vision and Pattern Recognition, 9737–9746 (2022) You et al. [2022] You, Z., Cui, L., Shen, Y., Yang, K., Lu, X., Zheng, Y., Le, X.: A unified model for multi-class anomaly detection. Advances in Neural Information Processing Systems 35, 4571–4584 (2022) Kirchheim et al. [2022] Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) You, Z., Cui, L., Shen, Y., Yang, K., Lu, X., Zheng, Y., Le, X.: A unified model for multi-class anomaly detection. Advances in Neural Information Processing Systems 35, 4571–4584 (2022) Kirchheim et al. [2022] Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016)
- Gudovskiy, D., Ishizaka, S., Kozuka, K.: Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows. IEEE Winter Conference on Applications of Computer Vision, 98–107 (2022) Deng and Li [2022] Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embedding. IEEE Conference on Computer Vision and Pattern Recognition, 9737–9746 (2022) You et al. [2022] You, Z., Cui, L., Shen, Y., Yang, K., Lu, X., Zheng, Y., Le, X.: A unified model for multi-class anomaly detection. Advances in Neural Information Processing Systems 35, 4571–4584 (2022) Kirchheim et al. [2022] Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embedding. IEEE Conference on Computer Vision and Pattern Recognition, 9737–9746 (2022) You et al. [2022] You, Z., Cui, L., Shen, Y., Yang, K., Lu, X., Zheng, Y., Le, X.: A unified model for multi-class anomaly detection. Advances in Neural Information Processing Systems 35, 4571–4584 (2022) Kirchheim et al. [2022] Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) You, Z., Cui, L., Shen, Y., Yang, K., Lu, X., Zheng, Y., Le, X.: A unified model for multi-class anomaly detection. Advances in Neural Information Processing Systems 35, 4571–4584 (2022) Kirchheim et al. [2022] Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016)
- Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embedding. IEEE Conference on Computer Vision and Pattern Recognition, 9737–9746 (2022) You et al. [2022] You, Z., Cui, L., Shen, Y., Yang, K., Lu, X., Zheng, Y., Le, X.: A unified model for multi-class anomaly detection. Advances in Neural Information Processing Systems 35, 4571–4584 (2022) Kirchheim et al. [2022] Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) You, Z., Cui, L., Shen, Y., Yang, K., Lu, X., Zheng, Y., Le, X.: A unified model for multi-class anomaly detection. Advances in Neural Information Processing Systems 35, 4571–4584 (2022) Kirchheim et al. [2022] Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016)
- You, Z., Cui, L., Shen, Y., Yang, K., Lu, X., Zheng, Y., Le, X.: A unified model for multi-class anomaly detection. Advances in Neural Information Processing Systems 35, 4571–4584 (2022) Kirchheim et al. [2022] Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016)
- Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: International Conference on Pattern Recognition, pp. 2636–2642 (2022) Tian et al. [2023] Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016)
- Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J.W., Singh, R., Carneiro, G.: Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis 90, 102930 (2023) Passalis et al. [2020] Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016)
- Passalis, N., Iosifidis, A., Gabbouj, M., Tefas, A.: Variance-preserving deep metric learning for content-based image retrieval. Pattern Recognition Letters 131, 8–14 (2020) Bergmann et al. [2019] Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016)
- Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. IEEE Conference on Computer Vision and Pattern Recognition, 9592–9600 (2019) Mishra et al. [2021] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016)
- Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: Vt-adl: A vision transformer network for image anomaly detection and localization. IEEE International Symposium on Industrial Electronics, 01–06 (2021) Yu et al. [2021] Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016)
- Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021) Batzner et al. [2023] Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016)
- Batzner, K., Heckler, L., König, R.: Efficientad: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv:2303.14535 (2023) Ahuja et al. [2019] Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016)
- Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. stat 1050, 25 (2019) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016)
- Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 248–255 (2009) Lin et al. [2017] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016)
- Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Zagoruyko and Komodakis [2016] Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016) Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016)
- Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision Conference (2016)
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.