Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Blockchain Solution for Collaborative Machine Learning over IoT (2311.14136v1)

Published 23 Nov 2023 in cs.LG, cs.CR, and cs.NI

Abstract: The rapid growth of Internet of Things (IoT) devices and applications has led to an increased demand for advanced analytics and machine learning techniques capable of handling the challenges associated with data privacy, security, and scalability. Federated learning (FL) and blockchain technologies have emerged as promising approaches to address these challenges by enabling decentralized, secure, and privacy-preserving model training on distributed data sources. In this paper, we present a novel IoT solution that combines the incremental learning vector quantization algorithm (XuILVQ) with Ethereum blockchain technology to facilitate secure and efficient data sharing, model training, and prototype storage in a distributed environment. Our proposed architecture addresses the shortcomings of existing blockchain-based FL solutions by reducing computational and communication overheads while maintaining data privacy and security. We assess the performance of our system through a series of experiments, showcasing its potential to enhance the accuracy and efficiency of machine learning tasks in IoT settings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. doi:10.1109/MSP.2020.2975749.
  2. arXiv:1811.12470. URL http://arxiv.org/abs/1811.12470
  3. doi:10.1109/ACCESS.2016.2566339.
  4. doi:10.1109/ACCESS.2020.3037474.
  5. doi:10.1145/3551663.3558676.
  6. doi:10.1016/j.eswa.2022.119036.
  7. doi:10.1109/TII.2021.3085960.
  8. doi:10.1109/LCOMM.2019.2921755. URL https://www.scopus.com
  9. doi:10.1109/JIOT.2020.3017377. URL https://www.scopus.com
  10. doi:10.1109/IJCNN55064.2022.9892039.
  11. doi:10.1109/BalkanCom55633.2022.9900546.
  12. doi:10.1109/JIOT.2020.3032544.
  13. doi:10.1109/GLOBECOM42002.2020.9322159.
  14. doi:https://doi.org/10.1016/j.eswa.2023.119896.
  15. doi:10.1109/TII.2022.3170348.
  16. doi:10.1109/JIOT.2022.3206337.
  17. doi:10.1145/3560816.
  18. doi:10.1109/TII.2022.3215231.
  19. doi:10.1007/s00521-010-0511-4.
  20. arXiv:2203.13060.
  21. Geth - official go implementation of the ethereum protocol. URL https://geth.ethereum.org/
  22. Imagesegments dataset, River - Machine Learning for Data Streams. URL https://riverml.xyz/0.18.0/api/datasets/ImageSegments/
  23. Phishing dataset, River - Machine Learning for Data Streams. URL https://riverml.xyz/0.18.0/api/datasets/Phishing/
  24. Bananas dataset, River - Machine Learning for Data Streams. URL https://riverml.xyz/0.18.0/api/datasets/Bananas/
  25. scikit-learn, scikit-learn: Machine Learning in Python. URL https://scikit-learn.org/stable/
  26. Numpy, NumPy: The fundamental package for scientific computing with Python. URL https://numpy.org/
  27. River, River: Online machine learning in Python. URL https://riverml.xyz/0.18.0/
  28. Web3.py, Web3.py: A Python library for interacting with Ethereum. URL https://web3py.readthedocs.io/en/stable/

Summary

We haven't generated a summary for this paper yet.