Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

Algorithm-agnostic low-rank approximation of operator monotone matrix functions (2311.14023v2)

Published 23 Nov 2023 in math.NA, cs.DS, and cs.NA

Abstract: Low-rank approximation of a matrix function, $f(A)$, is an important task in computational mathematics. Most methods require direct access to $f(A)$, which is often considerably more expensive than accessing $A$. Persson and Kressner (SIMAX 2023) avoid this issue for symmetric positive semidefinite matrices by proposing funNystr\"om, which first constructs a Nystr\"om approximation to $A$ using subspace iteration, and then uses the approximation to directly obtain a low-rank approximation for $f(A)$. They prove that the method yields a near-optimal approximation whenever $f$ is a continuous operator monotone function with $f(0) = 0$. We significantly generalize the results of Persson and Kressner beyond subspace iteration. We show that if $\widehat{A}$ is a near-optimal low-rank Nystr\"om approximation to $A$ then $f(\widehat{A})$ is a near-optimal low-rank approximation to $f(A)$, independently of how $\widehat{A}$ is computed. Further, we show sufficient conditions for a basis $Q$ to produce a near-optimal Nystr\"om approximation $\widehat{A} = AQ(QT AQ){\dagger} QT A$. We use these results to establish that many common low-rank approximation methods produce near-optimal Nystr\"om approximations to $A$ and therefore to $f(A)$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.