Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Application of Reduced Basis Methods to Core Computation in APOLLO3 (2311.13902v1)

Published 23 Nov 2023 in math.NA and cs.NA

Abstract: In the aim of reducing the computational cost of the resolution of parameter-dependent eigenvalue problems, a model order reduction (MOR) procedure is proposed. We focus on the case of non-self-adjoint generalized eigenvalue problems, such as the stationary multigroup neutron diffusion equations. The method lies in an approximation of the manifold of solutions using a Proper Orthogonal Decomposition approach. The numerical method is composed of two stages. In the offline stage, we build a reduced space which approximates the manifold. In the online stage, for any given new set of parameters, we solve a reduced problem on the reduced space within a much smaller computational time than the required time to solve the high-fidelity problem. This method is applied to core computations in the APOLLO3 code.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.