Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Leveraging Optimal Transport via Projections on Subspaces for Machine Learning Applications (2311.13883v1)

Published 23 Nov 2023 in cs.LG

Abstract: Optimal Transport has received much attention in Machine Learning as it allows to compare probability distributions by exploiting the geometry of the underlying space. However, in its original formulation, solving this problem suffers from a significant computational burden. Thus, a meaningful line of work consists at proposing alternatives to reduce this burden while still enjoying its properties. In this thesis, we focus on alternatives which use projections on subspaces. The main such alternative is the Sliced-Wasserstein distance, which we first propose to extend to Riemannian manifolds in order to use it in Machine Learning applications for which using such spaces has been shown to be beneficial in the recent years. We also study sliced distances between positive measures in the so-called unbalanced OT problem. Back to the original Euclidean Sliced-Wasserstein distance between probability measures, we study the dynamic of gradient flows when endowing the space with this distance in place of the usual Wasserstein distance. Then, we investigate the use of the Busemann function, a generalization of the inner product in metric spaces, in the space of probability measures. Finally, we extend the subspace detour approach to incomparable spaces using the Gromov-Wasserstein distance.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)