Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Leveraging Optimal Transport via Projections on Subspaces for Machine Learning Applications (2311.13883v1)

Published 23 Nov 2023 in cs.LG

Abstract: Optimal Transport has received much attention in Machine Learning as it allows to compare probability distributions by exploiting the geometry of the underlying space. However, in its original formulation, solving this problem suffers from a significant computational burden. Thus, a meaningful line of work consists at proposing alternatives to reduce this burden while still enjoying its properties. In this thesis, we focus on alternatives which use projections on subspaces. The main such alternative is the Sliced-Wasserstein distance, which we first propose to extend to Riemannian manifolds in order to use it in Machine Learning applications for which using such spaces has been shown to be beneficial in the recent years. We also study sliced distances between positive measures in the so-called unbalanced OT problem. Back to the original Euclidean Sliced-Wasserstein distance between probability measures, we study the dynamic of gradient flows when endowing the space with this distance in place of the usual Wasserstein distance. Then, we investigate the use of the Busemann function, a generalization of the inner product in metric spaces, in the space of probability measures. Finally, we extend the subspace detour approach to incomparable spaces using the Gromov-Wasserstein distance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.