On Principles of Emergent Organization (2311.13749v1)
Abstract: After more than a century of concerted effort, physics still lacks basic principles of spontaneous self-organization. To appreciate why, we first state the problem, outline historical approaches, and survey the present state of the physics of self-organization. This frames the particular challenges arising from mathematical intractability and the resulting need for computational approaches, as well as those arising from a chronic failure to define structure. Then, an overview of two modern mathematical formulations of organization -- intrinsic computation and evolution operators -- lays out a way to overcome these challenges. Together, the vantage point they afford shows how to account for the emergence of structured states via a statistical mechanics of systems arbitrarily far from equilibrium. The result is a constructive path forward to principles of organization that builds on mathematical identification of structure.
- H. Bénard. Les Tourbillons Cellulaires dans une nappe Liquide Propageant de la Chaleur par Convection: en Régime Permanent. Gauthier-Villars, 1901.
- Lord (J. W. Strutt) Rayleigh. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Phil. Mag. (Series 6), 32(192):529–546, 1916.
- S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Oxford, Clarendon Press, 1968.
- F. H. Busse. Non-linear properties of thermal convection. Reports on Progress in Physics, 41(12):1929, 1978.
- Dynamical instabilities and the transition to chaotic Taylor vortex flow. J. Fluid Mech., 94(1):103–128, 1979.
- Pattern formation and wave-number selection by rayleigh-benard convection in a cylindrical container. Physica Scripta, T9:97, 1985.
- W. H. Zurek. Sub-planck structure in phase space and its relevance for quantum decoherence. Nature, 412:712–717, 2001.
- A. M. Turing. The chemical basis of morphogenesis. Trans. Roy. Soc., Series B, 237:5, 1952.
- Geometry and morphology of the cosmic web: Analyzing spatial patterns in the universe. In ISVD09 (Intl. Symp. Voronoi Diagrams Engin.). 2009.
- Cosmic structure as the quantum interference of a coherent dark wave. Nature Physics, 10:496–499, 2014.
- Pattern universes. Comptes Rendus Mechanique, 347:318–331, 2019.
- M. Cross and H. Greenside. Pattern Formation and Dynamics in Nonequilibrium Systems. Cambridge University Press, Cambridge, United Kingdom, 2009.
- R. Hoyle. Pattern Formation: An Introduction to Methods. Cambridge University Press, New York, 2006.
- W. Heisenberg. Nonlinear problems in physics. Physics Today, 20:23–33, 1967.
- D. Ruelle and F. Takens. On the nature of turbulence. Comm. Math. Phys., 20:167–192, 1971.
- Low-dimensional chaos in a hydrodynamic system. Phys. Rev. Lett., 51:1442, 1983.
- Pattern formation outside of equilibrium. Rev. Mod. Phys., 65(3):851–1112, 1993.
- L. Boltzmann. Entgegnung auf die wärmetheoretischen betrachtungen des hrn. e. zermelo. Annalen der physik, 293(4):773–784, 1896.
- St. G. Brush. Kinetic theory: Irreversible processes. Elsevier, 2016.
- M. C. Mackey, editor. Time’s Arrow: The Origins of Thermodynamic Behavior. Springer-Verlag, New York, 1992.
- J. L. Lebowitz. Boltzmann’s entropy and time’s arrow. Physics today, 46(9):32–38, 1993.
- A. C. Newell. Envelope equations. Lectures in Applied Mathematics, 15(157):4, 1974.
- K. A. Emanuel. The theory of hurricanes. Ann. Rev. Fluid Mech., 23(1):179–196, 1991.
- H. L. Swinney. Emergence and evolution of patterns. In AIP Conference Proceedings, volume 501, pages 3–22. American Institute of Physics, 2000.
- P. Ball. The Self-Made Tapestry: Pattern Formation in Nature. Oxford University Press, New York, 1999.
- Novel type of phase transition in a system of self-driven particles. Phys. Rev. Let., 75(6):1226, 1995.
- J. Toner and Y. Tu. Long-range order in a two-dimensional dynamical XY model: How birds fly together. Phys. Rev. Let., 75(23):4326, 1995.
- Y. Tajima and T. Nagatani. Scaling behavior of crowd flow outside a hall. Physica A: Statistical Mechanics and its Applications, 292(1-4):545–554, 2001.
- Synchronization in complex networks. Physics Reports, 469(3):93–153, 2008.
- P. Grassberger. New mechanism for deterministic diffusion. Phys. Rev. A, 28:3666, 1983.
- P. Grassberger. Long-range effects in an elementary cellular automaton. J. Stat. Physics, 45(1-2):27–39, 1986.
- Turbulent pattern bases for cellular automata. Physica D, 69:279 – 301, 1993.
- Computational mechanics of cellular automata: An example. Physica D, 103:169–189, 1997.
- A. H. Carter. Classical and Statistical Thermodynamics. Prentice Hall, New Jersey, 2001.
- J. P. Joule. On the mechanical equivalent of heat. Phil. Trans. Roy. Soc. London, pages 61–82, 1850.
- S. Carnot. Reflections on the motive power of fire, and on machines fitted to develop that power. Paris: Bachelier, 1824.
- W. H. Cropper. Rudolf clausius and the road to entropy. American journal of physics, 54(12):1068–1074, 1986.
- A. T. Winfree. The prehistory of the Belousov-Zhabotinsky oscillator. Journal of Chemical Education, 61(8):661, 1984.
- A. M. Zhabotinsky. A history of chemical oscillations and waves. Chaos, 1(4):379–386, 1991.
- Electronic liquid-crystal phases of a doped Mott insulator. Nature, 393(6685):550–553, 1998.
- Stripe order in the underdoped region of the two-dimensional Hubbard model. Science, 358(6367):1155–1160, 2017.
- Possible nematic to smectic phase transition in a two-dimensional electron gas at half-filling. Nature Comm., 8(1):1–6, 2017.
- What drives nematic order in iron-based superconductors? Nature physics, 10(2):97–104, 2014.
- L. D. Landau. On the theory of phase transitions. In L. D. Landau Collected Papers, volume 1, pages 234–252. Nauka, Moscow, 1969. Originally published in Zh. Eksp. Teor. Fiz. 7, pp. 19–32 (1937).
- I. Prigogine. Introduction to Thermodynamics of Irreversible Processes. John Wiley and Sons, New York, third edition, 1968.
- S. R. de Groot and P. Mazur. Non-Equilibrium Thermodynamics. North Holland, Amsterdam, 1962.
- E. T. Jaynes. Information theory and statistical mechanics. Phys. Rev., 106(4):620–630, 1957.
- W. T. Grandy. Entropy and The Time Evolution of Macroscopic Systems, volume 10. Oxford University Press, 2008.
- L. Onsager. The effects of shape on the interaction of colloidal particles. Ann. New York Acad. Sci., 51(4):627–659, 1949.
- T. A. Moore. Six Ideas that Shaped Physics; Unit T: Some Processes are Irreversible. McGraw-Hill, New York, second edition, 2003.
- A. Ben-Naim. A Farewell to Entropy: Statistical Thermodynamics Based on Information. World Scientific, 2008.
- S. G. Brush. The kind of motion we call heat, volume 1. North-Holland Amsterdam, Oxford, 1976.
- L. Boltzmann. Wissenschaftliche Abhandlungen: Bd. 1865-1874. Verlag von Johann Ambrosius Barth, Leipzig, 1909.
- J. W. Gibbs. On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Sci., III:108, 343, 1875-1878.
- Statistical mechanics. Amsterdam. Elsevier, 2011.
- D. V. Schroeder. An Introduction to Thermal Physics. Oxford University Press, 2021.
- A. Wehrl. General properties of entropy. Reviews of Modern Physics, 50(2):221, 1978.
- C. E. Shannon. A mathematical theory of communication. Bell Sys. Tech. J., 27:379–423, 623–656, 1948.
- Elements of Information Theory. Wiley-Interscience, New York, second edition, 2006.
- H. B. Callen. Thermodynamics and an Introduction to Thermostatistics. Wiley, New York, second edition, 1985a.
- Anatomy of a bit: Information in a time series observation. CHAOS, 21(3):037109, 2011.
- E. T. Jaynes. Gibbs vs boltzmann entropies. American Journal of Physics, 33(5):391–398, 1965.
- P. Ehrenfest and T. Ehrenfest. The conceptual foundations of the statistical approach in mechanics. Dover, 1990.
- The generalized Boltzmann distribution is the only distribution in which the Gibbs-Shannon entropy equals the thermodynamic entropy. The Journal of Chemical Physics, 151(3):034113, 2019.
- L. Onsager. Reciprocal relations in irreversible processes. I. Phys. Rev., 37(4):405, 1931.
- L. Onsager. Reciprocal relations in irreversible processes. II. Phys. Rev., 38(12):2265, 1931.
- D. Kondepudi and I. Prigogine. Modern Thermodynamics: From Heat Engines to Dissipative Structures. John Wiley & Sons, 2014.
- W. Thomson. A mechanical theory of thermo-electric currents. Proc. Royal Society of Edinburgh, 3:91–98, 1857.
- The climate system and the second law of thermodynamics. Rev. Mod. Phys., 94:015001, Jan 2022.
- J. Keizer. Statistical Thermodynamics of Nonequilibrium Processes. Springer, 1987.
- U. Seifert. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys., 75:126001, 2012.
- G. D. Kirchhoff. Ann. Phys., 75:1891, 1848.
- J. W. Gibbs. The Scientific Papers of J. Willard Gibbs. Longmans, Green, New York, New York, 1906.
- J. C. Maxwell. A Treatise on Electricity and Magnetism, vol. I and II. Dover Publications, Inc., New York, New York, third edition, 1954.
- H. von Helmholtz. Zur theorie der stationären ströme in reibenden flüssigkeiten. Wissenschaftliche Abhandlugen, 1:223–230, 1868.
- Lord (J. W. Strutt) Rayleigh. The theory of sound. Macmillan & Company, 1877.
- H. A. Lorentz. The theorem of Poynting concerning the energy in the electromagnetic field and two general propositions concerning the propagation of light. Amsterdammer Akademie der Wetenschappen, 4:176, 1896.
- R. Landauer. Inadequacy of entropy and entropy derivatives in characterizing the steady state. Physical Review A, 12(2):636, 1975.
- E. T. Jaynes. The minimum entropy production principle. Annu. Rev. Phys. Chem., 31:579–601, 1980.
- E. Barbera. On the principle of minimal entropy production for Navier-Stokes-Fourier fluids. Continuum Mechanics and Thermodynamics, 11(5):327–330, 1999.
- P. Palffy-Muhoray. Comment on “A check of Prigogine’s theorem of minimum entropy production in a rod in a nonequilibrium stationary state” by Irena Danielewicz-Ferchmin and A. Ryszard Ferchmin [Am. J. Phys. 68 (10), 962–965 (2000)]. Am. J. Physics, 69(7):825–826, 2001.
- J. Ross and M. O. Vlad. Exact solutions for the entropy production rate of several irreversible processes. J. Physical Chemistry A, 109(46):10607–10612, 2005.
- P. Glansdorff and I. Prigogine. Thermodynamic theory of structure, stability and fluctuations. 1971.
- G. Nicolis and I. Prigogine. Self-Organization in Nonequilibrium Systems. Wiley, New York, 1977.
- J. Keizer and R. F. Fox. Qualms regarding the range of validity of the Glansdorff-Prigogine criterion for stability of non-equilibrium states. Proc. Natl. Acad. Sci. USA, 71(1):192–196, 1974.
- The thermodynamic stability theory of non-equilibrium states. Proceedings of the National Academy of Sciences, 71(1):197–199, 1974.
- R. F. Fox. Irreversible processes at nonequilibrium steady states. Proc. Natl. Acad. Sci. USA, 76(5):2114–2117, 1979.
- G. Nicolis and I. Prigogine. Irreversible processes at nonequilibrium steady states and lyapounov functions. Proceedings of the National Academy of Sciences, 76(12):6060–6061, 1979.
- R. F. Fox. The “excess entropy” around nonequilibrium steady states,(δ2s)sssubscriptsuperscript𝛿2𝑠𝑠𝑠(\delta^{2}s)_{ss}( italic_δ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_s ) start_POSTSUBSCRIPT italic_s italic_s end_POSTSUBSCRIPT, is not a Liapunov function. Proc. Natl. Acad. Sci. USA, 77(7):3763–3766, 1980.
- Broken symmetry, emergent properties, dissipative structures, life. In Self-organizing systems, pages 445–457. Springer, 1987.
- L. E. Reichl. A Modern Course in Statistical Mechanics. University of Texas Press, Austin, Texas, 1980.
- J. Keizer. Fluctuations, stability, and generalized state functions at nonequilibrium steady states. The Journal of Chemical Physics, 65(11):4431–4444, 1976.
- P. Gaspard. Time-reversed dynamical entropy and irreversibility in markovian random processes. J. Stat. Phys., 117(3/4):599–615, 2004.
- Information flows? A critique of transfer entropies. Physical review letters, 116(23):238701, 2016.
- Thermodynamics of information. 11:131–139, 2015.
- Nonnegative decomposition of multivariate information. 2010. arXiv:1004.2515 [cs.IT].
- Multivariate dependence beyond Shannon information. Entropy, 19(10):531, 2017.
- Information thermodynamics of Turing patterns. Phys. Rev. Let., 121:108301, 2018.
- E. T. Jaynes. Macroscopic prediction. In Complex Systems—Operational Approaches in Neurobiology, Physics, and Computers, pages 254–269. Springer, 1985.
- Principles of maximum entropy and maximum caliber in statistical physics. Reviews of Modern Physics, 85(3):1115, 2013.
- The maximum caliber variational principle for nonequilibria. Annual Review of Physical Chemistry, 71:213–238, 2020.
- P. Attard. Optimising principle for non-equilibrium phase transitions and pattern formation with results for heat convection. arXiv:1208.5105.
- H. Haken. Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices, volume 20. Springer, 2012.
- H. Haken. Information and Self-Organization. Springer, New York, 2016.
- P. W. Anderson. More is different. Science, 177(4047):393–396, 1972.
- J. L. Lebowitz and H. Spohn. A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys., 95:333, 1999.
- J. P. Crutchfield. The calculi of emergence: Computation, dynamics, and induction. Physica D, 75:11–54, 1994.
- S. Carroll. The big picture: on the origins of life, meaning, and the universe itself. Penguin, 2017.
- Fourier’s law: a challenge to theorists. In Mathematical physics 2000, pages 128–150. World Scientific, 2000.
- H. Grad. Asymptotic theory of the Boltzmann equation. The Physics of Fluids, 6(2):147–181, 1963.
- M. Slemrod. Hilbert’s sixth problem and the failure of the Boltzmann to Euler limit. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2118):20170222, 2018.
- M. J. Block. Surface tension as the cause of Bénard cells and surface deformation in a liquid film. Nature, 178(4534):650–651, 1956.
- J. R. A. Pearson. On convection cells induced by surface tension. J. Fluid Mechanics, 4(5):489–500, 1958.
- Onset of surface-tension-driven Bénard convection. Physical review letters, 75(10):1938, 1995.
- T. M. Merlis. Interacting components of the top-of-atmosphere energy balance affect changes in regional surface temperature. Geophysical Research Letters, 41(20):7291–7297, 2014.
- K. A. Emanuel. The dependence of hurricane intensity on climate. Nature, 326(6112):483, 1987.
- K. Walsh and I.G. Watterson. Tropical cyclone-like vortices in a limited area model: Comparison with observed climatology. J. Climate, 10(9):2240–2259, 1997.
- Towards direct simulation of future tropical cyclone statistics in a high-resolution global atmospheric model. Advances in Meteorology, 2010, 2010.
- C. Moore and S. Mertens. The nature of computation. Oxford, 2011.
- More really is different. Physica D: Nonlinear Phenomena, 238(9-10):835–839, 2009.
- A. M. Turing. On computable numbers, with an application to the entsheidungsproblem. Proc. Lond. Math. Soc. Ser. 2, 42:230, 1936.
- Elements of the Theory of Computation. Prentice-Hall, Englewood Cliffs, N.J., second edition, 1998.
- Introduction to Automata Theory, Languages, and Computation. Prentice-Hall, New York, third edition, 2006.
- M. Sipser. Introduction to the Theory of Computation. Cengage Learning, New York, third edition, 2014.
- M. Matthew. Universality in elementary cellular automata. Complex Systems, 15(1):1–40, 2004.
- The attractor-basin portrait of a cellular automaton. J. Stat. Phys., 66:1415 – 1462, 1992.
- J. Conway. The game of life. Scientific American, 223(4):4, 1970.
- J. Kari. Rice’s theorem for the limit sets of cellular automata. Theoretical computer science, 127(2):229–254, 1994.
- C. Moore. Unpredictability and undecidability in dynamical systems. Phys. Rev. Lett., 64:2354, 1990.
- C. Moore. Majority-vote cellular automata, Ising dynamics, and P-completeness. Journal of Statistical Physics, 88(3-4):795–805, 1997.
- T. Neary and D. Woods. P-completeness of cellular automaton Rule 110. In International Colloquium on Automata, Languages, and Programming, pages 132–143. Springer, 2006.
- C. Moore. Quasilinear cellular automata. Physica D: Nonlinear Phenomena, 103(1-4):100–132, 1997.
- Evolution of vortex statistics in two-dimensional turbulence. Phys. Rev. Let., 66(21):2735, 1991.
- J. C. McWilliams. The vortices of two-dimensional turbulence. J. of Fluid Mech., 219:361–385, 1990.
- The Theory of Critical Phenomena. Oxford University Press, Oxford, 1992.
- Measures of statistical complexity: Why? Phys. Lett. A, 238:244–252, 1998.
- M. Li and P. M. B. Vitanyi. Kolmogorov complexity and its applications. Technical Report CS-R8901, Centruum voor Wiskunde en Informatica, Universiteit van Amsterdam, 1989.
- A. N. Kolmogorov. Three approaches to the concept of the amount of information. Prob. Info. Trans., 1:1, 1965.
- G. Chaitin. On the length of programs for computing finite binary sequences. J. ACM, 13:145, 1966.
- A. A. Brudno. Entropy and the complexity of the trajectories of a dynamical system. Trans. Moscow Math. Soc., 44:127, 1983.
- C. H. Bennett. On the nature and origin of complexity in discrete, homogeneous locally-interacting systems. Found. Phys., 16:585–592, 1986.
- M. Koppel. Complexity, depth, and sophistication. Complexity, 1:1087–1091, 1987.
- C. H. Bennett. Dissipation, information, computational complexity, and the definition of organization. In D. Pines, editor, Emerging Syntheses in the Sciences. Addison-Wesley, Redwood City, 1988.
- M. Koppel and H. Atlan. An almost machine-independent theory of program-length complexity, sophistication, and induction. Information Sciences, 56(1-3):23–33, 1991.
- Thermodynamic depth of causal states: Objective complexity via minimal representations. Physical Review E, 59(1):275–283, 1999.
- A. Lempel and J. Ziv. On the complexity of individual sequences. IEEE Trans. Info. Th., IT-22:75, 1976.
- J. Ziv and A. Lempel. Compression of individual sequences via variable-rate encoding. IEEE Trans. Info. Th., IT-24:530, 1978.
- J. Rissanen. Modeling by shortest data description. Automatica, 14:462, 1978.
- G. E. Hinton and R. Zemel. Autoencoders, minimum description length and Helmholtz free energy. Advances in neural information processing systems, 6, 1993.
- Modal analysis of fluid flows: An overview. Aiaa Journal, 55(12):4013–4041, 2017.
- V. Algazi and D. Sakrison. On the optimality of the Karhunen-Loève expansion (corresp.). IEEE Trans. Info. Th., 15(2):319–321, 1969.
- Model reduction for compressible flows using POD and Galerkin projection. Physica D: Nonlinear Phenomena, 189(1-2):115–129, 2004.
- Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge, United Kingdom, 2012.
- Time-series learning of latent-space dynamics for reduced-order model closure. Physica D: Nonlinear Phenomena, 405:132368, 2020.
- Recurrent neural network closure of parametric POD-Galerkin reduced-order models based on the Mori-Zwanzig formalism. J. Computational Physics, 410:109402, 2020.
- A. Lasota and M. C. Mackey. Chaos, fractals, and noise: stochastic aspects of dynamics, volume 97. Springer Science & Business Media, 2013.
- W. C. Reynolds and A. K. M. F. Hussain. The mechanics of an organized wave in turbulent shear flow. Part 3. theoretical models and comparisons with experiments. J. Fluid Mechanics, 54(2):263–288, 1972.
- I. Mezić. Analysis of fluid flows via spectral properties of the Koopman operator. Ann. Rev. Fluid Mechanics, 45:357–378, 2013.
- P. Huerre and P. A. Monkewitz. Local and global instabilities in spatially developing flows. Ann. Rev. Fluid Mechanics, 22(1):473–537, 1990.
- I. Mezić. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dynamics, 41(1):309–325, 2005.
- B. O. Koopman. Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. USA, 17(5):315, 1931.
- Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PloS one, 11(2):e0150171, 2016.
- Modern Koopman theory for dynamical systems. SIAM Review, 64(2), 2022.
- On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 1(2):391–421, 2014.
- On the numerical approximation of the Perron-Frobenius and Koopman operator. J. Computational Dynamics, 3(1):51–79, 2016.
- M. J. Colbrook and A. Townsend. Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems. arXiv preprint arXiv:2111.14889, 2021.
- V. Lucarini and M. Chekroun. Hasselmann’s program and beyond: New theoretical tools for understanding the climate crisis. arXiv preprint arXiv:2303.12009, 2023.
- G. Haller. Lagrangian coherent structures. Ann. Rev. Fluid Mech., 47:137–162, 2015.
- A critical comparison of Lagrangian methods for coherent structure detection. Chaos, 27(5):053104, 2017.
- P. Gaspard. Chaos, scattering and statistical mechanics. Cambridge Univ. Press, 2005.
- Kernel methods for detecting coherent structures in dynamical data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(12):123112, 2019.
- G. Froyland and M. Dellnitz. Detecting and locating near-optimal almost-invariant sets and cycles. SIAM Journal on Scientific Computing, 24(6):1839–1863, 2003.
- G. Froyland and K. Padberg. Almost-invariant sets and invariant manifolds — connecting probabilistic and geometric descriptions of coherent structures in flows. Physica D: Nonlinear Phenomena, 238(16):1507 – 1523, 2009.
- F. Noé and F. Nuske. A variational approach to modeling slow processes in stochastic dynamical systems. Multiscale Modeling & Simulation, 11(2):635–655, 2013.
- Variational tensor approach for approximating the rare-event kinetics of macromolecular systems. J. Chemical Physics, 144(5):054105, 2016.
- Coherent sets for nonautonomous dynamical systems. Physica D: Nonlinear Phenomena, 239(16):1527–1541, 2010.
- Transport in time-dependent dynamical systems: Finite-time coherent sets. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(4):043116, 2010.
- G. Froyland and P. Koltai. Detecting the birth and death of finite-time coherent sets. arXiv preprint arXiv:2103.16286, 2021.
- P. J. Schmid. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mechanics, 656:5–28, 2010.
- S. Bagheri. Koopman-mode decomposition of the cylinder wake. Journal of Fluid Mechanics, 726:596–623, 2013.
- Empirical orthogonal functions and related techniques in atmospheric science: A review. Inl. J. Climatology: J. Roy. Meteorological Society, 27(9):1119–1152, 2007.
- An early warning indicator for atmospheric blocking events using transfer operators. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(3):036406, 2015.
- Spectral analysis of climate dynamics with operator-theoretic approaches. Nature Communications, 12(1):6570, 2021.
- A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science, 25(6):1307–1346, 2015.
- H. Arbabi and I. Mezic. Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator. SIAM Journal on Applied Dynamical Systems, 16(4):2096–2126, 2017.
- J. P. Crutchfield. Between order and chaos. Nature Physics, 8(January):17–24, 2012.
- D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, New York, 1995.
- M. Morse and G. A. Hedlund. Symbolic dynamics. Am. J. Math., 60(4):815–866, 1938.
- S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc., 73:797–817, 1967.
- A. Turing. On computable numbers, with an application to the Entschiedungsproblem. Proc. Lond. Math. Soc., 42, 43:230–265, 544–546, 1937.
- A. Church. A note on the entscheidungsproblem. J. Symbolic Logic, 1:40–41, 1936.
- E. Post. Introduction to the general theory of elementary propositions. Am. J. Math., 43:163–185, 1921.
- E. Nagel and J. R. Newman. Gödel’s Proof. New York University Press, New York, 1968.
- C. Anteneodo and A.R. Plastino. Some features of the López-Ruiz-Mancini-Calbet (LMC) statistical measure of complexity. Physics Letters A, 223(5):348–354, 1996.
- B. Weiss. Subshifts of finite type and sofic systems. Monastsh. Math., 77:462, 1973.
- B. Kitchens and S. Tuncel. Semi-groups and graphs. Israel. J. Math., 53:231, 1986.
- A. Ginzburg. Algebraic theory of automata. Academic Press, 1968.
- A. Rupe and J. P. Crutchfield. Algebraic theory of patterns as generalized symmetries. Symmetry, 14(8):1636, 2022.
- M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs, New Jersey, 1967.
- D. Huffman. Canonical forms for information-lossless finite-state logical machines. IRE Trans. Circ. Th., 6:41–59, 1959.
- Computational mechanics: Pattern and prediction, structure and simplicity. J. Stat. Phys., 104:817–879, 2001.
- Time’s barbed arrow: Irreversibility, crypticity, and stored information. Phys. Rev. Lett., 103(9):094101, 2009.
- Unsupervised discovery of extreme weather events using universal representations of emergent organization. 2023. arXiv:2206.15050.
- A. Rupe and J. P. Crutchfield. Local causal states and discrete coherent structures. Chaos, 28(7):1–22, 2018.
- A. Rupe and J. P. Crutchfield. Spacetime symmetries, invariant sets, and additive subdynamics of cellular automata. arXiv preprint arXiv:1812.11597, 2018.
- Disco: Physics-based unsupervised discovery of coherent structures in spatiotemporal systems. In 2019 IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC), pages 75–87. IEEE, 2019. arXiv:1909.11822 [physics.comp-ph].
- S. Marzen and J. P. Crutchfield. Structure and randomness of continuous-time discrete-event processes. J. Stat. Physics, 169(2):303–315, 2017.
- N. Brodu and J. P. Crutchfield. Discovering causal structure with reproducing-kernel Hilbert space ϵitalic-ϵ\epsilonitalic_ϵ-machines. Chaos: An Interdisciplinary Journal of Nonlinear Science, 32(2):023103, 2022.
- Bayesian structural inference for hidden processes. Phys. Rev. E, 89:042119, 2014.
- Exact complexity: The Spectral decomposition of intrinsic computation. Physics Letters A, 380(9-10):998–1002, 2016.
- A. Jurgens and J. P. Crutchfield. Divergent predictive states: The statistical complexity dimension of stationary, ergodic hidden Markov processes. Chaos, 31(8):0050460, 2021.
- Spectral signature of the pitchfork bifurcation: Liouville equation approach. Physical Review E, 51(1):74, 1995.
- J. P. Crutchfield. Is anything ever new? Considering emergence. In G. Cowan, D. Pines, and D. Melzner, editors, Complexity: Metaphors, Models, and Reality, volume XIX of Santa Fe Institute Studies in the Sciences of Complexity, pages 479–497, Reading, MA, 1994. Addison-Wesley. Santa Fe Institute Technical Report 94-03-011; reprinted in Emergence: Contemporary Readings in Philosophy and Science, M. A. Bedau and P. Humphreys, editors, Bradford Book, MIT Press, Cambridge, MA (2008) 269-286.
- Adaptive, locally linear models of complex dynamics. Proceedings of the National Academy of Sciences, 116(5):1501–1510, 2019.
- Maximally predictive states: From partial observations to long timescales. Chaos: An Interdisciplinary Journal of Nonlinear Science, 33(2):023136, 02 2023.
- R. Wilde and S. Singh. Statistical Mechanics: Fundamentals and Modern Applications. Wiley & Sons, New York, first edition, 1998.
- Optimal prediction with memory. Physica D: Nonlinear Phenomena, 166(3-4):239–257, 2002.
- R. Zwanzig. Nonlinear generalized Langevin equations. J. Statistical Physics, 9(3):215–220, 1973.
- K. K. Lin and F. Lu. Data-driven model reduction, Wiener projections, and the Koopman-Mori-Zwanzig formalism. J. Computational Physics, 424:109864, 2021.
- Kernel-based prediction of non-Markovian time series. Physica D: Nonlinear Phenomena, 418:132829, 2021.
- Nonequilibrium statistical mechanics and optimal prediction of partially-observed complex systems. New Journal of Physics, 24(10):103033, 2022.
- R.P. Feynman. Feynman on scientific method. https://www.youtube.com/watch?v=EYPapE-3FRw, Accessed: 2023-06-25.
- Transfer Entropy. Springer, 2016.
- D. A. Smirnov. Spurious causalities with transfer entropy. Phys. Rev. E, 87(4):042917, 2013.
- J. Pearl and D. Mackenzie. The book of why: the new science of cause and effect. Basic books, 2018.
- Detecting causality in complex ecosystems. Science, 338(6106):496–500, 2012.
- Detecting and quantifying causal associations in large nonlinear time series datasets. Science Advances, 5(11), 2019.
- S. Sinha and U. Vaidya. On data-driven computation of information transfer for causal inference in discrete-time dynamical systems. J. Nonlinear Science, 30(4):1651–1676, 2020.
- Adam T. Rupe (1 paper)
- James P. Crutchfield (112 papers)