Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Principles of Emergent Organization (2311.13749v1)

Published 23 Nov 2023 in cond-mat.stat-mech, cs.LG, nlin.CD, nlin.PS, and physics.ao-ph

Abstract: After more than a century of concerted effort, physics still lacks basic principles of spontaneous self-organization. To appreciate why, we first state the problem, outline historical approaches, and survey the present state of the physics of self-organization. This frames the particular challenges arising from mathematical intractability and the resulting need for computational approaches, as well as those arising from a chronic failure to define structure. Then, an overview of two modern mathematical formulations of organization -- intrinsic computation and evolution operators -- lays out a way to overcome these challenges. Together, the vantage point they afford shows how to account for the emergence of structured states via a statistical mechanics of systems arbitrarily far from equilibrium. The result is a constructive path forward to principles of organization that builds on mathematical identification of structure.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (228)
  1. H. Bénard. Les Tourbillons Cellulaires dans une nappe Liquide Propageant de la Chaleur par Convection: en Régime Permanent. Gauthier-Villars, 1901.
  2. Lord (J. W. Strutt) Rayleigh. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Phil. Mag. (Series 6), 32(192):529–546, 1916.
  3. S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Oxford, Clarendon Press, 1968.
  4. F. H. Busse. Non-linear properties of thermal convection. Reports on Progress in Physics, 41(12):1929, 1978.
  5. Dynamical instabilities and the transition to chaotic Taylor vortex flow. J. Fluid Mech., 94(1):103–128, 1979.
  6. Pattern formation and wave-number selection by rayleigh-benard convection in a cylindrical container. Physica Scripta, T9:97, 1985.
  7. W. H. Zurek. Sub-planck structure in phase space and its relevance for quantum decoherence. Nature, 412:712–717, 2001.
  8. A. M. Turing. The chemical basis of morphogenesis. Trans. Roy. Soc., Series B, 237:5, 1952.
  9. Geometry and morphology of the cosmic web: Analyzing spatial patterns in the universe. In ISVD09 (Intl. Symp. Voronoi Diagrams Engin.). 2009.
  10. Cosmic structure as the quantum interference of a coherent dark wave. Nature Physics, 10:496–499, 2014.
  11. Pattern universes. Comptes Rendus Mechanique, 347:318–331, 2019.
  12. M. Cross and H. Greenside. Pattern Formation and Dynamics in Nonequilibrium Systems. Cambridge University Press, Cambridge, United Kingdom, 2009.
  13. R. Hoyle. Pattern Formation: An Introduction to Methods. Cambridge University Press, New York, 2006.
  14. W. Heisenberg. Nonlinear problems in physics. Physics Today, 20:23–33, 1967.
  15. D. Ruelle and F. Takens. On the nature of turbulence. Comm. Math. Phys., 20:167–192, 1971.
  16. Low-dimensional chaos in a hydrodynamic system. Phys. Rev. Lett., 51:1442, 1983.
  17. Pattern formation outside of equilibrium. Rev. Mod. Phys., 65(3):851–1112, 1993.
  18. L. Boltzmann. Entgegnung auf die wärmetheoretischen betrachtungen des hrn. e. zermelo. Annalen der physik, 293(4):773–784, 1896.
  19. St. G. Brush. Kinetic theory: Irreversible processes. Elsevier, 2016.
  20. M. C. Mackey, editor. Time’s Arrow: The Origins of Thermodynamic Behavior. Springer-Verlag, New York, 1992.
  21. J. L. Lebowitz. Boltzmann’s entropy and time’s arrow. Physics today, 46(9):32–38, 1993.
  22. A. C. Newell. Envelope equations. Lectures in Applied Mathematics, 15(157):4, 1974.
  23. K. A. Emanuel. The theory of hurricanes. Ann. Rev. Fluid Mech., 23(1):179–196, 1991.
  24. H. L. Swinney. Emergence and evolution of patterns. In AIP Conference Proceedings, volume 501, pages 3–22. American Institute of Physics, 2000.
  25. P. Ball. The Self-Made Tapestry: Pattern Formation in Nature. Oxford University Press, New York, 1999.
  26. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Let., 75(6):1226, 1995.
  27. J. Toner and Y. Tu. Long-range order in a two-dimensional dynamical XY model: How birds fly together. Phys. Rev. Let., 75(23):4326, 1995.
  28. Y. Tajima and T. Nagatani. Scaling behavior of crowd flow outside a hall. Physica A: Statistical Mechanics and its Applications, 292(1-4):545–554, 2001.
  29. Synchronization in complex networks. Physics Reports, 469(3):93–153, 2008.
  30. P. Grassberger. New mechanism for deterministic diffusion. Phys. Rev. A, 28:3666, 1983.
  31. P. Grassberger. Long-range effects in an elementary cellular automaton. J. Stat. Physics, 45(1-2):27–39, 1986.
  32. Turbulent pattern bases for cellular automata. Physica D, 69:279 – 301, 1993.
  33. Computational mechanics of cellular automata: An example. Physica D, 103:169–189, 1997.
  34. A. H. Carter. Classical and Statistical Thermodynamics. Prentice Hall, New Jersey, 2001.
  35. J. P. Joule. On the mechanical equivalent of heat. Phil. Trans. Roy. Soc. London, pages 61–82, 1850.
  36. S. Carnot. Reflections on the motive power of fire, and on machines fitted to develop that power. Paris: Bachelier, 1824.
  37. W. H. Cropper. Rudolf clausius and the road to entropy. American journal of physics, 54(12):1068–1074, 1986.
  38. A. T. Winfree. The prehistory of the Belousov-Zhabotinsky oscillator. Journal of Chemical Education, 61(8):661, 1984.
  39. A. M. Zhabotinsky. A history of chemical oscillations and waves. Chaos, 1(4):379–386, 1991.
  40. Electronic liquid-crystal phases of a doped Mott insulator. Nature, 393(6685):550–553, 1998.
  41. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science, 358(6367):1155–1160, 2017.
  42. Possible nematic to smectic phase transition in a two-dimensional electron gas at half-filling. Nature Comm., 8(1):1–6, 2017.
  43. What drives nematic order in iron-based superconductors? Nature physics, 10(2):97–104, 2014.
  44. L. D. Landau. On the theory of phase transitions. In L. D. Landau Collected Papers, volume 1, pages 234–252. Nauka, Moscow, 1969. Originally published in Zh. Eksp. Teor. Fiz. 7, pp. 19–32 (1937).
  45. I. Prigogine. Introduction to Thermodynamics of Irreversible Processes. John Wiley and Sons, New York, third edition, 1968.
  46. S. R. de Groot and P. Mazur. Non-Equilibrium Thermodynamics. North Holland, Amsterdam, 1962.
  47. E. T. Jaynes. Information theory and statistical mechanics. Phys. Rev., 106(4):620–630, 1957.
  48. W. T. Grandy. Entropy and The Time Evolution of Macroscopic Systems, volume 10. Oxford University Press, 2008.
  49. L. Onsager. The effects of shape on the interaction of colloidal particles. Ann. New York Acad. Sci., 51(4):627–659, 1949.
  50. T. A. Moore. Six Ideas that Shaped Physics; Unit T: Some Processes are Irreversible. McGraw-Hill, New York, second edition, 2003.
  51. A. Ben-Naim. A Farewell to Entropy: Statistical Thermodynamics Based on Information. World Scientific, 2008.
  52. S. G. Brush. The kind of motion we call heat, volume 1. North-Holland Amsterdam, Oxford, 1976.
  53. L. Boltzmann. Wissenschaftliche Abhandlungen: Bd. 1865-1874. Verlag von Johann Ambrosius Barth, Leipzig, 1909.
  54. J. W. Gibbs. On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Sci., III:108, 343, 1875-1878.
  55. Statistical mechanics. Amsterdam. Elsevier, 2011.
  56. D. V. Schroeder. An Introduction to Thermal Physics. Oxford University Press, 2021.
  57. A. Wehrl. General properties of entropy. Reviews of Modern Physics, 50(2):221, 1978.
  58. C. E. Shannon. A mathematical theory of communication. Bell Sys. Tech. J., 27:379–423, 623–656, 1948.
  59. Elements of Information Theory. Wiley-Interscience, New York, second edition, 2006.
  60. H. B. Callen. Thermodynamics and an Introduction to Thermostatistics. Wiley, New York, second edition, 1985a.
  61. Anatomy of a bit: Information in a time series observation. CHAOS, 21(3):037109, 2011.
  62. E. T. Jaynes. Gibbs vs boltzmann entropies. American Journal of Physics, 33(5):391–398, 1965.
  63. P. Ehrenfest and T. Ehrenfest. The conceptual foundations of the statistical approach in mechanics. Dover, 1990.
  64. The generalized Boltzmann distribution is the only distribution in which the Gibbs-Shannon entropy equals the thermodynamic entropy. The Journal of Chemical Physics, 151(3):034113, 2019.
  65. L. Onsager. Reciprocal relations in irreversible processes. I. Phys. Rev., 37(4):405, 1931.
  66. L. Onsager. Reciprocal relations in irreversible processes. II. Phys. Rev., 38(12):2265, 1931.
  67. D. Kondepudi and I. Prigogine. Modern Thermodynamics: From Heat Engines to Dissipative Structures. John Wiley & Sons, 2014.
  68. W. Thomson. A mechanical theory of thermo-electric currents. Proc. Royal Society of Edinburgh, 3:91–98, 1857.
  69. The climate system and the second law of thermodynamics. Rev. Mod. Phys., 94:015001, Jan 2022.
  70. J. Keizer. Statistical Thermodynamics of Nonequilibrium Processes. Springer, 1987.
  71. U. Seifert. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys., 75:126001, 2012.
  72. G. D. Kirchhoff. Ann. Phys., 75:1891, 1848.
  73. J. W. Gibbs. The Scientific Papers of J. Willard Gibbs. Longmans, Green, New York, New York, 1906.
  74. J. C. Maxwell. A Treatise on Electricity and Magnetism, vol. I and II. Dover Publications, Inc., New York, New York, third edition, 1954.
  75. H. von Helmholtz. Zur theorie der stationären ströme in reibenden flüssigkeiten. Wissenschaftliche Abhandlugen, 1:223–230, 1868.
  76. Lord (J. W. Strutt) Rayleigh. The theory of sound. Macmillan & Company, 1877.
  77. H. A. Lorentz. The theorem of Poynting concerning the energy in the electromagnetic field and two general propositions concerning the propagation of light. Amsterdammer Akademie der Wetenschappen, 4:176, 1896.
  78. R. Landauer. Inadequacy of entropy and entropy derivatives in characterizing the steady state. Physical Review A, 12(2):636, 1975.
  79. E. T. Jaynes. The minimum entropy production principle. Annu. Rev. Phys. Chem., 31:579–601, 1980.
  80. E. Barbera. On the principle of minimal entropy production for Navier-Stokes-Fourier fluids. Continuum Mechanics and Thermodynamics, 11(5):327–330, 1999.
  81. P. Palffy-Muhoray. Comment on “A check of Prigogine’s theorem of minimum entropy production in a rod in a nonequilibrium stationary state” by Irena Danielewicz-Ferchmin and A. Ryszard Ferchmin [Am. J. Phys. 68 (10), 962–965 (2000)]. Am. J. Physics, 69(7):825–826, 2001.
  82. J. Ross and M. O. Vlad. Exact solutions for the entropy production rate of several irreversible processes. J. Physical Chemistry A, 109(46):10607–10612, 2005.
  83. P. Glansdorff and I. Prigogine. Thermodynamic theory of structure, stability and fluctuations. 1971.
  84. G. Nicolis and I. Prigogine. Self-Organization in Nonequilibrium Systems. Wiley, New York, 1977.
  85. J. Keizer and R. F. Fox. Qualms regarding the range of validity of the Glansdorff-Prigogine criterion for stability of non-equilibrium states. Proc. Natl. Acad. Sci. USA, 71(1):192–196, 1974.
  86. The thermodynamic stability theory of non-equilibrium states. Proceedings of the National Academy of Sciences, 71(1):197–199, 1974.
  87. R. F. Fox. Irreversible processes at nonequilibrium steady states. Proc. Natl. Acad. Sci. USA, 76(5):2114–2117, 1979.
  88. G. Nicolis and I. Prigogine. Irreversible processes at nonequilibrium steady states and lyapounov functions. Proceedings of the National Academy of Sciences, 76(12):6060–6061, 1979.
  89. R. F. Fox. The “excess entropy” around nonequilibrium steady states,(δ2⁢s)s⁢ssubscriptsuperscript𝛿2𝑠𝑠𝑠(\delta^{2}s)_{ss}( italic_δ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_s ) start_POSTSUBSCRIPT italic_s italic_s end_POSTSUBSCRIPT, is not a Liapunov function. Proc. Natl. Acad. Sci. USA, 77(7):3763–3766, 1980.
  90. Broken symmetry, emergent properties, dissipative structures, life. In Self-organizing systems, pages 445–457. Springer, 1987.
  91. L. E. Reichl. A Modern Course in Statistical Mechanics. University of Texas Press, Austin, Texas, 1980.
  92. J. Keizer. Fluctuations, stability, and generalized state functions at nonequilibrium steady states. The Journal of Chemical Physics, 65(11):4431–4444, 1976.
  93. P. Gaspard. Time-reversed dynamical entropy and irreversibility in markovian random processes. J. Stat. Phys., 117(3/4):599–615, 2004.
  94. Information flows? A critique of transfer entropies. Physical review letters, 116(23):238701, 2016.
  95. Thermodynamics of information. 11:131–139, 2015.
  96. Nonnegative decomposition of multivariate information. 2010. arXiv:1004.2515 [cs.IT].
  97. Multivariate dependence beyond Shannon information. Entropy, 19(10):531, 2017.
  98. Information thermodynamics of Turing patterns. Phys. Rev. Let., 121:108301, 2018.
  99. E. T. Jaynes. Macroscopic prediction. In Complex Systems—Operational Approaches in Neurobiology, Physics, and Computers, pages 254–269. Springer, 1985.
  100. Principles of maximum entropy and maximum caliber in statistical physics. Reviews of Modern Physics, 85(3):1115, 2013.
  101. The maximum caliber variational principle for nonequilibria. Annual Review of Physical Chemistry, 71:213–238, 2020.
  102. P. Attard. Optimising principle for non-equilibrium phase transitions and pattern formation with results for heat convection. arXiv:1208.5105.
  103. H. Haken. Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices, volume 20. Springer, 2012.
  104. H. Haken. Information and Self-Organization. Springer, New York, 2016.
  105. P. W. Anderson. More is different. Science, 177(4047):393–396, 1972.
  106. J. L. Lebowitz and H. Spohn. A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys., 95:333, 1999.
  107. J. P. Crutchfield. The calculi of emergence: Computation, dynamics, and induction. Physica D, 75:11–54, 1994.
  108. S. Carroll. The big picture: on the origins of life, meaning, and the universe itself. Penguin, 2017.
  109. Fourier’s law: a challenge to theorists. In Mathematical physics 2000, pages 128–150. World Scientific, 2000.
  110. H. Grad. Asymptotic theory of the Boltzmann equation. The Physics of Fluids, 6(2):147–181, 1963.
  111. M. Slemrod. Hilbert’s sixth problem and the failure of the Boltzmann to Euler limit. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2118):20170222, 2018.
  112. M. J. Block. Surface tension as the cause of Bénard cells and surface deformation in a liquid film. Nature, 178(4534):650–651, 1956.
  113. J. R. A. Pearson. On convection cells induced by surface tension. J. Fluid Mechanics, 4(5):489–500, 1958.
  114. Onset of surface-tension-driven Bénard convection. Physical review letters, 75(10):1938, 1995.
  115. T. M. Merlis. Interacting components of the top-of-atmosphere energy balance affect changes in regional surface temperature. Geophysical Research Letters, 41(20):7291–7297, 2014.
  116. K. A. Emanuel. The dependence of hurricane intensity on climate. Nature, 326(6112):483, 1987.
  117. K. Walsh and I.G. Watterson. Tropical cyclone-like vortices in a limited area model: Comparison with observed climatology. J. Climate, 10(9):2240–2259, 1997.
  118. Towards direct simulation of future tropical cyclone statistics in a high-resolution global atmospheric model. Advances in Meteorology, 2010, 2010.
  119. C. Moore and S. Mertens. The nature of computation. Oxford, 2011.
  120. More really is different. Physica D: Nonlinear Phenomena, 238(9-10):835–839, 2009.
  121. A. M. Turing. On computable numbers, with an application to the entsheidungsproblem. Proc. Lond. Math. Soc. Ser. 2, 42:230, 1936.
  122. Elements of the Theory of Computation. Prentice-Hall, Englewood Cliffs, N.J., second edition, 1998.
  123. Introduction to Automata Theory, Languages, and Computation. Prentice-Hall, New York, third edition, 2006.
  124. M. Sipser. Introduction to the Theory of Computation. Cengage Learning, New York, third edition, 2014.
  125. M. Matthew. Universality in elementary cellular automata. Complex Systems, 15(1):1–40, 2004.
  126. The attractor-basin portrait of a cellular automaton. J. Stat. Phys., 66:1415 – 1462, 1992.
  127. J. Conway. The game of life. Scientific American, 223(4):4, 1970.
  128. J. Kari. Rice’s theorem for the limit sets of cellular automata. Theoretical computer science, 127(2):229–254, 1994.
  129. C. Moore. Unpredictability and undecidability in dynamical systems. Phys. Rev. Lett., 64:2354, 1990.
  130. C. Moore. Majority-vote cellular automata, Ising dynamics, and P-completeness. Journal of Statistical Physics, 88(3-4):795–805, 1997.
  131. T. Neary and D. Woods. P-completeness of cellular automaton Rule 110. In International Colloquium on Automata, Languages, and Programming, pages 132–143. Springer, 2006.
  132. C. Moore. Quasilinear cellular automata. Physica D: Nonlinear Phenomena, 103(1-4):100–132, 1997.
  133. Evolution of vortex statistics in two-dimensional turbulence. Phys. Rev. Let., 66(21):2735, 1991.
  134. J. C. McWilliams. The vortices of two-dimensional turbulence. J. of Fluid Mech., 219:361–385, 1990.
  135. The Theory of Critical Phenomena. Oxford University Press, Oxford, 1992.
  136. Measures of statistical complexity: Why? Phys. Lett. A, 238:244–252, 1998.
  137. M. Li and P. M. B. Vitanyi. Kolmogorov complexity and its applications. Technical Report CS-R8901, Centruum voor Wiskunde en Informatica, Universiteit van Amsterdam, 1989.
  138. A. N. Kolmogorov. Three approaches to the concept of the amount of information. Prob. Info. Trans., 1:1, 1965.
  139. G. Chaitin. On the length of programs for computing finite binary sequences. J. ACM, 13:145, 1966.
  140. A. A. Brudno. Entropy and the complexity of the trajectories of a dynamical system. Trans. Moscow Math. Soc., 44:127, 1983.
  141. C. H. Bennett. On the nature and origin of complexity in discrete, homogeneous locally-interacting systems. Found. Phys., 16:585–592, 1986.
  142. M. Koppel. Complexity, depth, and sophistication. Complexity, 1:1087–1091, 1987.
  143. C. H. Bennett. Dissipation, information, computational complexity, and the definition of organization. In D. Pines, editor, Emerging Syntheses in the Sciences. Addison-Wesley, Redwood City, 1988.
  144. M. Koppel and H. Atlan. An almost machine-independent theory of program-length complexity, sophistication, and induction. Information Sciences, 56(1-3):23–33, 1991.
  145. Thermodynamic depth of causal states: Objective complexity via minimal representations. Physical Review E, 59(1):275–283, 1999.
  146. A. Lempel and J. Ziv. On the complexity of individual sequences. IEEE Trans. Info. Th., IT-22:75, 1976.
  147. J. Ziv and A. Lempel. Compression of individual sequences via variable-rate encoding. IEEE Trans. Info. Th., IT-24:530, 1978.
  148. J. Rissanen. Modeling by shortest data description. Automatica, 14:462, 1978.
  149. G. E. Hinton and R. Zemel. Autoencoders, minimum description length and Helmholtz free energy. Advances in neural information processing systems, 6, 1993.
  150. Modal analysis of fluid flows: An overview. Aiaa Journal, 55(12):4013–4041, 2017.
  151. V. Algazi and D. Sakrison. On the optimality of the Karhunen-Loève expansion (corresp.). IEEE Trans. Info. Th., 15(2):319–321, 1969.
  152. Model reduction for compressible flows using POD and Galerkin projection. Physica D: Nonlinear Phenomena, 189(1-2):115–129, 2004.
  153. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge, United Kingdom, 2012.
  154. Time-series learning of latent-space dynamics for reduced-order model closure. Physica D: Nonlinear Phenomena, 405:132368, 2020.
  155. Recurrent neural network closure of parametric POD-Galerkin reduced-order models based on the Mori-Zwanzig formalism. J. Computational Physics, 410:109402, 2020.
  156. A. Lasota and M. C. Mackey. Chaos, fractals, and noise: stochastic aspects of dynamics, volume 97. Springer Science & Business Media, 2013.
  157. W. C. Reynolds and A. K. M. F. Hussain. The mechanics of an organized wave in turbulent shear flow. Part 3. theoretical models and comparisons with experiments. J. Fluid Mechanics, 54(2):263–288, 1972.
  158. I. Mezić. Analysis of fluid flows via spectral properties of the Koopman operator. Ann. Rev. Fluid Mechanics, 45:357–378, 2013.
  159. P. Huerre and P. A. Monkewitz. Local and global instabilities in spatially developing flows. Ann. Rev. Fluid Mechanics, 22(1):473–537, 1990.
  160. I. Mezić. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dynamics, 41(1):309–325, 2005.
  161. B. O. Koopman. Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. USA, 17(5):315, 1931.
  162. Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PloS one, 11(2):e0150171, 2016.
  163. Modern Koopman theory for dynamical systems. SIAM Review, 64(2), 2022.
  164. On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 1(2):391–421, 2014.
  165. On the numerical approximation of the Perron-Frobenius and Koopman operator. J. Computational Dynamics, 3(1):51–79, 2016.
  166. M. J. Colbrook and A. Townsend. Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems. arXiv preprint arXiv:2111.14889, 2021.
  167. V. Lucarini and M. Chekroun. Hasselmann’s program and beyond: New theoretical tools for understanding the climate crisis. arXiv preprint arXiv:2303.12009, 2023.
  168. G. Haller. Lagrangian coherent structures. Ann. Rev. Fluid Mech., 47:137–162, 2015.
  169. A critical comparison of Lagrangian methods for coherent structure detection. Chaos, 27(5):053104, 2017.
  170. P. Gaspard. Chaos, scattering and statistical mechanics. Cambridge Univ. Press, 2005.
  171. Kernel methods for detecting coherent structures in dynamical data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(12):123112, 2019.
  172. G. Froyland and M. Dellnitz. Detecting and locating near-optimal almost-invariant sets and cycles. SIAM Journal on Scientific Computing, 24(6):1839–1863, 2003.
  173. G. Froyland and K. Padberg. Almost-invariant sets and invariant manifolds — connecting probabilistic and geometric descriptions of coherent structures in flows. Physica D: Nonlinear Phenomena, 238(16):1507 – 1523, 2009.
  174. F. Noé and F. Nuske. A variational approach to modeling slow processes in stochastic dynamical systems. Multiscale Modeling & Simulation, 11(2):635–655, 2013.
  175. Variational tensor approach for approximating the rare-event kinetics of macromolecular systems. J. Chemical Physics, 144(5):054105, 2016.
  176. Coherent sets for nonautonomous dynamical systems. Physica D: Nonlinear Phenomena, 239(16):1527–1541, 2010.
  177. Transport in time-dependent dynamical systems: Finite-time coherent sets. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(4):043116, 2010.
  178. G. Froyland and P. Koltai. Detecting the birth and death of finite-time coherent sets. arXiv preprint arXiv:2103.16286, 2021.
  179. P. J. Schmid. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mechanics, 656:5–28, 2010.
  180. S. Bagheri. Koopman-mode decomposition of the cylinder wake. Journal of Fluid Mechanics, 726:596–623, 2013.
  181. Empirical orthogonal functions and related techniques in atmospheric science: A review. Inl. J. Climatology: J. Roy. Meteorological Society, 27(9):1119–1152, 2007.
  182. An early warning indicator for atmospheric blocking events using transfer operators. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(3):036406, 2015.
  183. Spectral analysis of climate dynamics with operator-theoretic approaches. Nature Communications, 12(1):6570, 2021.
  184. A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science, 25(6):1307–1346, 2015.
  185. H. Arbabi and I. Mezic. Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator. SIAM Journal on Applied Dynamical Systems, 16(4):2096–2126, 2017.
  186. J. P. Crutchfield. Between order and chaos. Nature Physics, 8(January):17–24, 2012.
  187. D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, New York, 1995.
  188. M. Morse and G. A. Hedlund. Symbolic dynamics. Am. J. Math., 60(4):815–866, 1938.
  189. S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc., 73:797–817, 1967.
  190. A. Turing. On computable numbers, with an application to the Entschiedungsproblem. Proc. Lond. Math. Soc., 42, 43:230–265, 544–546, 1937.
  191. A. Church. A note on the entscheidungsproblem. J. Symbolic Logic, 1:40–41, 1936.
  192. E. Post. Introduction to the general theory of elementary propositions. Am. J. Math., 43:163–185, 1921.
  193. E. Nagel and J. R. Newman. Gödel’s Proof. New York University Press, New York, 1968.
  194. C. Anteneodo and A.R. Plastino. Some features of the López-Ruiz-Mancini-Calbet (LMC) statistical measure of complexity. Physics Letters A, 223(5):348–354, 1996.
  195. B. Weiss. Subshifts of finite type and sofic systems. Monastsh. Math., 77:462, 1973.
  196. B. Kitchens and S. Tuncel. Semi-groups and graphs. Israel. J. Math., 53:231, 1986.
  197. A. Ginzburg. Algebraic theory of automata. Academic Press, 1968.
  198. A. Rupe and J. P. Crutchfield. Algebraic theory of patterns as generalized symmetries. Symmetry, 14(8):1636, 2022.
  199. M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs, New Jersey, 1967.
  200. D. Huffman. Canonical forms for information-lossless finite-state logical machines. IRE Trans. Circ. Th., 6:41–59, 1959.
  201. Computational mechanics: Pattern and prediction, structure and simplicity. J. Stat. Phys., 104:817–879, 2001.
  202. Time’s barbed arrow: Irreversibility, crypticity, and stored information. Phys. Rev. Lett., 103(9):094101, 2009.
  203. Unsupervised discovery of extreme weather events using universal representations of emergent organization. 2023. arXiv:2206.15050.
  204. A. Rupe and J. P. Crutchfield. Local causal states and discrete coherent structures. Chaos, 28(7):1–22, 2018.
  205. A. Rupe and J. P. Crutchfield. Spacetime symmetries, invariant sets, and additive subdynamics of cellular automata. arXiv preprint arXiv:1812.11597, 2018.
  206. Disco: Physics-based unsupervised discovery of coherent structures in spatiotemporal systems. In 2019 IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC), pages 75–87. IEEE, 2019. arXiv:1909.11822 [physics.comp-ph].
  207. S. Marzen and J. P. Crutchfield. Structure and randomness of continuous-time discrete-event processes. J. Stat. Physics, 169(2):303–315, 2017.
  208. N. Brodu and J. P. Crutchfield. Discovering causal structure with reproducing-kernel Hilbert space ϵitalic-ϵ\epsilonitalic_ϵ-machines. Chaos: An Interdisciplinary Journal of Nonlinear Science, 32(2):023103, 2022.
  209. Bayesian structural inference for hidden processes. Phys. Rev. E, 89:042119, 2014.
  210. Exact complexity: The Spectral decomposition of intrinsic computation. Physics Letters A, 380(9-10):998–1002, 2016.
  211. A. Jurgens and J. P. Crutchfield. Divergent predictive states: The statistical complexity dimension of stationary, ergodic hidden Markov processes. Chaos, 31(8):0050460, 2021.
  212. Spectral signature of the pitchfork bifurcation: Liouville equation approach. Physical Review E, 51(1):74, 1995.
  213. J. P. Crutchfield. Is anything ever new? Considering emergence. In G. Cowan, D. Pines, and D. Melzner, editors, Complexity: Metaphors, Models, and Reality, volume XIX of Santa Fe Institute Studies in the Sciences of Complexity, pages 479–497, Reading, MA, 1994. Addison-Wesley. Santa Fe Institute Technical Report 94-03-011; reprinted in Emergence: Contemporary Readings in Philosophy and Science, M. A. Bedau and P. Humphreys, editors, Bradford Book, MIT Press, Cambridge, MA (2008) 269-286.
  214. Adaptive, locally linear models of complex dynamics. Proceedings of the National Academy of Sciences, 116(5):1501–1510, 2019.
  215. Maximally predictive states: From partial observations to long timescales. Chaos: An Interdisciplinary Journal of Nonlinear Science, 33(2):023136, 02 2023.
  216. R. Wilde and S. Singh. Statistical Mechanics: Fundamentals and Modern Applications. Wiley & Sons, New York, first edition, 1998.
  217. Optimal prediction with memory. Physica D: Nonlinear Phenomena, 166(3-4):239–257, 2002.
  218. R. Zwanzig. Nonlinear generalized Langevin equations. J. Statistical Physics, 9(3):215–220, 1973.
  219. K. K. Lin and F. Lu. Data-driven model reduction, Wiener projections, and the Koopman-Mori-Zwanzig formalism. J. Computational Physics, 424:109864, 2021.
  220. Kernel-based prediction of non-Markovian time series. Physica D: Nonlinear Phenomena, 418:132829, 2021.
  221. Nonequilibrium statistical mechanics and optimal prediction of partially-observed complex systems. New Journal of Physics, 24(10):103033, 2022.
  222. R.P. Feynman. Feynman on scientific method. https://www.youtube.com/watch?v=EYPapE-3FRw, Accessed: 2023-06-25.
  223. Transfer Entropy. Springer, 2016.
  224. D. A. Smirnov. Spurious causalities with transfer entropy. Phys. Rev. E, 87(4):042917, 2013.
  225. J. Pearl and D. Mackenzie. The book of why: the new science of cause and effect. Basic books, 2018.
  226. Detecting causality in complex ecosystems. Science, 338(6106):496–500, 2012.
  227. Detecting and quantifying causal associations in large nonlinear time series datasets. Science Advances, 5(11), 2019.
  228. S. Sinha and U. Vaidya. On data-driven computation of information transfer for causal inference in discrete-time dynamical systems. J. Nonlinear Science, 30(4):1651–1676, 2020.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Adam T. Rupe (1 paper)
  2. James P. Crutchfield (112 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.