Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

$σ$-PCA: a building block for neural learning of identifiable linear transformations (2311.13580v4)

Published 22 Nov 2023 in cs.LG, cs.AI, and stat.ML

Abstract: Linear principal component analysis (PCA) learns (semi-)orthogonal transformations by orienting the axes to maximize variance. Consequently, it can only identify orthogonal axes whose variances are clearly distinct, but it cannot identify the subsets of axes whose variances are roughly equal. It cannot eliminate the subspace rotational indeterminacy: it fails to disentangle components with equal variances (eigenvalues), resulting, in each eigen subspace, in randomly rotated axes. In this paper, we propose $\sigma$-PCA, a method that (1) formulates a unified model for linear and nonlinear PCA, the latter being a special case of linear independent component analysis (ICA), and (2) introduces a missing piece into nonlinear PCA that allows it to eliminate, from the canonical linear PCA solution, the subspace rotational indeterminacy -- without whitening the inputs. Whitening, a preprocessing step which converts the inputs into unit-variance inputs, has generally been a prerequisite step for linear ICA methods, which meant that conventional nonlinear PCA could not necessarily preserve the orthogonality of the overall transformation, could not directly reduce dimensionality, and could not intrinsically order by variances. We offer insights on the relationship between linear PCA, nonlinear PCA, and linear ICA -- three methods with autoencoder formulations for learning special linear transformations from data, transformations that are (semi-)orthogonal for PCA, and arbitrary unit-variance for ICA. As part of our formulation, nonlinear PCA can be seen as a method that maximizes both variance and statistical independence, lying in the middle between linear PCA and linear ICA, serving as a building block for learning linear transformations that are identifiable.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: