Papers
Topics
Authors
Recent
2000 character limit reached

Transfer Learning-based Real-time Handgun Detection

Published 22 Nov 2023 in cs.CV, cs.AI, and cs.HC | (2311.13559v2)

Abstract: Traditional surveillance systems rely on human attention, limiting their effectiveness. This study employs convolutional neural networks and transfer learning to develop a real-time computer vision system for automatic handgun detection. Comprehensive analysis of online handgun detection methods is conducted, emphasizing reducing false positives and learning time. Transfer learning is demonstrated as an effective approach. Despite technical challenges, the proposed system achieves a precision rate of 84.74%, demonstrating promising performance comparable to related works, enabling faster learning and accurate automatic handgun detection for enhanced security. This research advances security measures by reducing human monitoring dependence, showcasing the potential of transfer learning-based approaches for efficient and reliable handgun detection.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.