Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hard Label Black Box Node Injection Attack on Graph Neural Networks (2311.13244v1)

Published 22 Nov 2023 in cs.LG, cs.CR, and cs.SI

Abstract: While graph neural networks have achieved state-of-the-art performances in many real-world tasks including graph classification and node classification, recent works have demonstrated they are also extremely vulnerable to adversarial attacks. Most previous works have focused on attacking node classification networks under impractical white-box scenarios. In this work, we will propose a non-targeted Hard Label Black Box Node Injection Attack on Graph Neural Networks, which to the best of our knowledge, is the first of its kind. Under this setting, more real world tasks can be studied because our attack assumes no prior knowledge about (1): the model architecture of the GNN we are attacking; (2): the model's gradients; (3): the output logits of the target GNN model. Our attack is based on an existing edge perturbation attack, from which we restrict the optimization process to formulate a node injection attack. In the work, we will evaluate the performance of the attack using three datasets, COIL-DEL, IMDB-BINARY, and NCI1.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.