Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Robust Outlier Bound Condition to Phase Retrieval with Adversarial Sparse Outliers (2311.13219v1)

Published 22 Nov 2023 in cs.IT, math.FA, math.IT, and math.PR

Abstract: We consider the problem of recovering an unknown signal $\pmb{x}0\in \mathbb{R}{n}$ from phaseless measurements. In this paper, we study the convex phase retrieval problem via PhaseLift from linear Gaussian measurements perturbed by $\ell{1}$-bounded noise and sparse outliers that can change an adversarially chosen $s$-fraction of the measurement vector. We show that the Robust-PhaseLift model can successfully reconstruct the ground-truth up to global phase for any $s< s{*}\approx 0.1185$ with $\mathcal{O}(n)$ measurements, even in the case where the sparse outliers may depend on the measurement and the observation. The recovery guarantees are based on the robust outlier bound condition and the analysis of the product of two Gaussian variables. Moreover, we construct adaptive counterexamples to show that the Robust-PhaseLift model fails when $s> s{*}$ with high probability.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)