Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Self-Supervised Music Source Separation Using Vector-Quantized Source Category Estimates (2311.13058v1)

Published 21 Nov 2023 in cs.SD and eess.AS

Abstract: Music source separation is focused on extracting distinct sonic elements from composite tracks. Historically, many methods have been grounded in supervised learning, necessitating labeled data, which is occasionally constrained in its diversity. More recent methods have delved into N-shot techniques that utilize one or more audio samples to aid in the separation. However, a challenge with some of these methods is the necessity for an audio query during inference, making them less suited for genres with varied timbres and effects. This paper offers a proof-of-concept for a self-supervised music source separation system that eliminates the need for audio queries at inference time. In the training phase, while it adopts a query-based approach, we introduce a modification by substituting the continuous embedding of query audios with Vector Quantized (VQ) representations. Trained end-to-end with up to N classes as determined by the VQ's codebook size, the model seeks to effectively categorise instrument classes. During inference, the input is partitioned into N sources, with some potentially left unutilized based on the mix's instrument makeup. This methodology suggests an alternative avenue for considering source separation across diverse music genres. We provide examples and additional results online.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.