Papers
Topics
Authors
Recent
2000 character limit reached

Fair Polylog-Approximate Low-Cost Hierarchical Clustering (2311.12501v1)

Published 21 Nov 2023 in cs.LG and cs.DS

Abstract: Research in fair machine learning, and particularly clustering, has been crucial in recent years given the many ethical controversies that modern intelligent systems have posed. Ahmadian et al. [2020] established the study of fairness in \textit{hierarchical} clustering, a stronger, more structured variant of its well-known flat counterpart, though their proposed algorithm that optimizes for Dasgupta's [2016] famous cost function was highly theoretical. Knittel et al. [2023] then proposed the first practical fair approximation for cost, however they were unable to break the polynomial-approximate barrier they posed as a hurdle of interest. We break this barrier, proposing the first truly polylogarithmic-approximate low-cost fair hierarchical clustering, thus greatly bridging the gap between the best fair and vanilla hierarchical clustering approximations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.