Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Classifier Calibration with ROC-Regularized Isotonic Regression (2311.12436v1)

Published 21 Nov 2023 in cs.LG

Abstract: Calibration of machine learning classifiers is necessary to obtain reliable and interpretable predictions, bridging the gap between model confidence and actual probabilities. One prominent technique, isotonic regression (IR), aims at calibrating binary classifiers by minimizing the cross entropy on a calibration set via monotone transformations. IR acts as an adaptive binning procedure, which allows achieving a calibration error of zero, but leaves open the issue of the effect on performance. In this paper, we first prove that IR preserves the convex hull of the ROC curve -- an essential performance metric for binary classifiers. This ensures that a classifier is calibrated while controlling for overfitting of the calibration set. We then present a novel generalization of isotonic regression to accommodate classifiers with K classes. Our method constructs a multidimensional adaptive binning scheme on the probability simplex, again achieving a multi-class calibration error equal to zero. We regularize this algorithm by imposing a form of monotony that preserves the K-dimensional ROC surface of the classifier. We show empirically that this general monotony criterion is effective in striking a balance between reducing cross entropy loss and avoiding overfitting of the calibration set.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.