Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Shedding the Bits: Pushing the Boundaries of Quantization with Minifloats on FPGAs (2311.12359v3)

Published 21 Nov 2023 in cs.CV, cs.AI, cs.AR, cs.LG, and cs.PF

Abstract: Post-training quantization (PTQ) is a powerful technique for model compression, reducing the numerical precision in neural networks without additional training overhead. Recent works have investigated adopting 8-bit floating-point formats(FP8) in the context of PTQ for model inference. However, floating-point formats smaller than 8 bits and their relative comparison in terms of accuracy-hardware cost with integers remains unexplored on FPGAs. In this work, we present minifloats, which are reduced-precision floating-point formats capable of further reducing the memory footprint, latency, and energy cost of a model while approaching full-precision model accuracy. We implement a custom FPGA-based multiply-accumulate operator library and explore the vast design space, comparing minifloat and integer representations across 3 to 8 bits for both weights and activations. We also examine the applicability of various integerbased quantization techniques to minifloats. Our experiments show that minifloats offer a promising alternative for emerging workloads such as vision transformers.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com