Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Causal Representations from General Environments: Identifiability and Intrinsic Ambiguity (2311.12267v2)

Published 21 Nov 2023 in cs.LG, cs.AI, econ.EM, stat.AP, and stat.ML

Abstract: We study causal representation learning, the task of recovering high-level latent variables and their causal relationships in the form of a causal graph from low-level observed data (such as text and images), assuming access to observations generated from multiple environments. Prior results on the identifiability of causal representations typically assume access to single-node interventions which is rather unrealistic in practice, since the latent variables are unknown in the first place. In this work, we provide the first identifiability results based on data that stem from general environments. We show that for linear causal models, while the causal graph can be fully recovered, the latent variables are only identified up to the surrounded-node ambiguity (SNA) \citep{varici2023score}. We provide a counterpart of our guarantee, showing that SNA is basically unavoidable in our setting. We also propose an algorithm, \texttt{LiNGCReL} which provably recovers the ground-truth model up to SNA, and we demonstrate its effectiveness via numerical experiments. Finally, we consider general non-parametric causal models and show that the same identification barrier holds when assuming access to groups of soft single-node interventions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: