Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Token-Level Adversarial Prompt Detection Based on Perplexity Measures and Contextual Information (2311.11509v3)

Published 20 Nov 2023 in cs.CL and cs.LG

Abstract: In recent years, LLMs (LLM) have emerged as pivotal tools in various applications. However, these models are susceptible to adversarial prompt attacks, where attackers can carefully curate input strings that mislead LLMs into generating incorrect or undesired outputs. Previous work has revealed that with relatively simple yet effective attacks based on discrete optimization, it is possible to generate adversarial prompts that bypass moderation and alignment of the models. This vulnerability to adversarial prompts underscores a significant concern regarding the robustness and reliability of LLMs. Our work aims to address this concern by introducing a novel approach to detecting adversarial prompts at a token level, leveraging the LLM's capability to predict the next token's probability. We measure the degree of the model's perplexity, where tokens predicted with high probability are considered normal, and those exhibiting high perplexity are flagged as adversarial. Additionaly, our method also integrates context understanding by incorporating neighboring token information to encourage the detection of contiguous adversarial prompt sequences. To this end, we design two algorithms for adversarial prompt detection: one based on optimization techniques and another on Probabilistic Graphical Models (PGM). Both methods are equipped with efficient solving methods, ensuring efficient adversarial prompt detection. Our token-level detection result can be visualized as heatmap overlays on the text sequence, allowing for a clearer and more intuitive representation of which part of the text may contain adversarial prompts.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.