Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DiffGANPaint: Fast Inpainting Using Denoising Diffusion GANs (2311.11469v1)

Published 3 Aug 2023 in cs.CV

Abstract: Free-form image inpainting is the task of reconstructing parts of an image specified by an arbitrary binary mask. In this task, it is typically desired to generalize model capabilities to unseen mask types, rather than learning certain mask distributions. Capitalizing on the advances in diffusion models, in this paper, we propose a Denoising Diffusion Probabilistic Model (DDPM) based model capable of filling missing pixels fast as it models the backward diffusion process using the generator of a generative adversarial network (GAN) network to reduce sampling cost in diffusion models. Experiments on general-purpose image inpainting datasets verify that our approach performs superior or on par with most contemporary works.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.