Papers
Topics
Authors
Recent
2000 character limit reached

Causal ATE Mitigates Unintended Bias in Controlled Text Generation (2311.11229v2)

Published 19 Nov 2023 in cs.CL

Abstract: We study attribute control in LLMs through the method of Causal Average Treatment Effect (Causal ATE). Existing methods for the attribute control task in LLMs (LMs) check for the co-occurrence of words in a sentence with the attribute of interest, and control for them. However, spurious correlation of the words with the attribute in the training dataset, can cause models to hallucinate the presence of the attribute when presented with the spurious correlate during inference. We show that the simple perturbation-based method of Causal ATE removes this unintended effect. Specifically, we ground it in the problem of toxicity mitigation, where a significant challenge lies in the inadvertent bias that often emerges towards protected groups post detoxification. We show that this unintended bias can be solved by the use of the Causal ATE metric and rigorously prove our claim. We provide experimental validations for our claims and release our code (anonymously) here: https://github.com/causalate-mitigates-bias/causal-ate-mitigates-bias.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 11 likes about this paper.