Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

LightBTSeg: A lightweight breast tumor segmentation model using ultrasound images via dual-path joint knowledge distillation (2311.11086v1)

Published 18 Nov 2023 in eess.IV and cs.CV

Abstract: The accurate segmentation of breast tumors is an important prerequisite for lesion detection, which has significant clinical value for breast tumor research. The mainstream deep learning-based methods have achieved a breakthrough. However, these high-performance segmentation methods are formidable to implement in clinical scenarios since they always embrace high computation complexity, massive parameters, slow inference speed, and huge memory consumption. To tackle this problem, we propose LightBTSeg, a dual-path joint knowledge distillation framework, for lightweight breast tumor segmentation. Concretely, we design a double-teacher model to represent the fine-grained feature of breast ultrasound according to different semantic feature realignments of benign and malignant breast tumors. Specifically, we leverage the bottleneck architecture to reconstruct the original Attention U-Net. It is regarded as a lightweight student model named Simplified U-Net. Then, the prior knowledge of benign and malignant categories is utilized to design the teacher network combined dual-path joint knowledge distillation, which distills the knowledge from cumbersome benign and malignant teachers to a lightweight student model. Extensive experiments conducted on breast ultrasound images (Dataset BUSI) and Breast Ultrasound Dataset B (Dataset B) datasets demonstrate that LightBTSeg outperforms various counterparts.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.