Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Challenges in data-based geospatial modeling for environmental research and practice (2311.11057v1)

Published 18 Nov 2023 in cs.LG

Abstract: With the rise of electronic data, particularly Earth observation data, data-based geospatial modelling using ML has gained popularity in environmental research. Accurate geospatial predictions are vital for domain research based on ecosystem monitoring and quality assessment and for policy-making and action planning, considering effective management of natural resources. The accuracy and computation speed of ML has generally proved efficient. However, many questions have yet to be addressed to obtain precise and reproducible results suitable for further use in both research and practice. A better understanding of the ML concepts applicable to geospatial problems enhances the development of data science tools providing transparent information crucial for making decisions on global challenges such as biosphere degradation and climate change. This survey reviews common nuances in geospatial modelling, such as imbalanced data, spatial autocorrelation, prediction errors, model generalisation, domain specificity, and uncertainty estimation. We provide an overview of techniques and popular programming tools to overcome or account for the challenges. We also discuss prospects for geospatial Artificial Intelligence in environmental applications.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.