Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improving Adversarial Transferability by Stable Diffusion (2311.11017v1)

Published 18 Nov 2023 in cs.CV

Abstract: Deep neural networks (DNNs) are susceptible to adversarial examples, which introduce imperceptible perturbations to benign samples, deceiving DNN predictions. While some attack methods excel in the white-box setting, they often struggle in the black-box scenario, particularly against models fortified with defense mechanisms. Various techniques have emerged to enhance the transferability of adversarial attacks for the black-box scenario. Among these, input transformation-based attacks have demonstrated their effectiveness. In this paper, we explore the potential of leveraging data generated by Stable Diffusion to boost adversarial transferability. This approach draws inspiration from recent research that harnessed synthetic data generated by Stable Diffusion to enhance model generalization. In particular, previous work has highlighted the correlation between the presence of both real and synthetic data and improved model generalization. Building upon this insight, we introduce a novel attack method called Stable Diffusion Attack Method (SDAM), which incorporates samples generated by Stable Diffusion to augment input images. Furthermore, we propose a fast variant of SDAM to reduce computational overhead while preserving high adversarial transferability. Our extensive experimental results demonstrate that our method outperforms state-of-the-art baselines by a substantial margin. Moreover, our approach is compatible with existing transfer-based attacks to further enhance adversarial transferability.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.