Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Comparison among Classical, Probabilistic and Quantum Algorithms for Hamiltonian Cycle problem (2311.10941v1)

Published 18 Nov 2023 in quant-ph, cs.DS, and cs.ET

Abstract: The Hamiltonian cycle problem (HCP), which is an NP-complete problem, consists of having a graph G with n nodes and m edges and finding the path that connects each node exactly once. In this paper we compare some algorithms to solve a Hamiltonian cycle problem, using different models of computations and especially the probabilistic and quantum ones. Starting from the classical probabilistic approach of random walks, we take a step to the quantum direction by involving an ad hoc designed Quantum Turing Machine (QTM), which can be a useful conceptual project tool for quantum algorithms. Introducing several constraints to the graphs, our analysis leads to not-exponential speedup improvements to the best-known algorithms. In particular, the results are based on bounded degree graphs (graphs with nodes having a maximum number of edges) and graphs with the right limited number of nodes and edges to allow them to outperform the other algorithms.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.