Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A novel post-hoc explanation comparison metric and applications (2311.10811v1)

Published 17 Nov 2023 in cs.LG and cs.AI

Abstract: Explanatory systems make the behavior of machine learning models more transparent, but are often inconsistent. To quantify the differences between explanatory systems, this paper presents the Shreyan Distance, a novel metric based on the weighted difference between ranked feature importance lists produced by such systems. This paper uses the Shreyan Distance to compare two explanatory systems, SHAP and LIME, for both regression and classification learning tasks. Because we find that the average Shreyan Distance varies significantly between these two tasks, we conclude that consistency between explainers not only depends on inherent properties of the explainers themselves, but also the type of learning task. This paper further contributes the XAISuite library, which integrates the Shreyan distance algorithm into machine learning pipelines.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.